1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A wrapper around any Reader to treat it as an RNG.

use std::old_io::Reader;
use Rng;

/// An RNG that reads random bytes straight from a `Reader`. This will
/// work best with an infinite reader, but this is not required.
///
/// # Panics
///
/// It will panic if it there is insufficient data to fulfill a request.
///
/// # Example
///
/// ```rust
/// use rand::{reader, Rng};
/// use std::old_io::MemReader;
///
/// let mut rng = reader::ReaderRng::new(MemReader::new(vec!(1,2,3,4,5,6,7,8)));
/// println!("{:x}", rng.gen::<u32>());
/// ```
pub struct ReaderRng<R> {
    reader: R
}

impl<R: Reader> ReaderRng<R> {
    /// Create a new `ReaderRng` from a `Reader`.
    pub fn new(r: R) -> ReaderRng<R> {
        ReaderRng {
            reader: r
        }
    }
}

impl<R: Reader> Rng for ReaderRng<R> {
    fn next_u32(&mut self) -> u32 {
        // This is designed for speed: reading a LE integer on a LE
        // platform just involves blitting the bytes into the memory
        // of the u32, similarly for BE on BE; avoiding byteswapping.
        if cfg!(target_endian="little") {
            self.reader.read_le_u32().unwrap()
        } else {
            self.reader.read_be_u32().unwrap()
        }
    }
    fn next_u64(&mut self) -> u64 {
        // see above for explanation.
        if cfg!(target_endian="little") {
            self.reader.read_le_u64().unwrap()
        } else {
            self.reader.read_be_u64().unwrap()
        }
    }
    fn fill_bytes(&mut self, v: &mut [u8]) {
        if v.len() == 0 { return }
        match self.reader.read_at_least(v.len(), v) {
            Ok(_) => {}
            Err(e) => panic!("ReaderRng.fill_bytes error: {:?}", e)
        }
    }
}

#[cfg(test)]
mod test {
    use super::ReaderRng;
    use std::old_io::MemReader;
    use std::num::Int;
    use Rng;

    #[test]
    fn test_reader_rng_u64() {
        // transmute from the target to avoid endianness concerns.
        let v = vec![0u8, 0, 0, 0, 0, 0, 0, 1,
                     0  , 0, 0, 0, 0, 0, 0, 2,
                     0,   0, 0, 0, 0, 0, 0, 3];
        let mut rng = ReaderRng::new(MemReader::new(v));

        assert_eq!(rng.next_u64(), 1_u64.to_be());
        assert_eq!(rng.next_u64(), 2_u64.to_be());
        assert_eq!(rng.next_u64(), 3_u64.to_be());
    }
    #[test]
    fn test_reader_rng_u32() {
        let v = vec![0u8, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3];
        let mut rng = ReaderRng::new(MemReader::new(v));

        assert_eq!(rng.next_u32(), 1_u32.to_be());
        assert_eq!(rng.next_u32(), 2_u32.to_be());
        assert_eq!(rng.next_u32(), 3_u32.to_be());
    }
    #[test]
    fn test_reader_rng_fill_bytes() {
        let v = [1u8, 2, 3, 4, 5, 6, 7, 8];
        let mut w = [0u8; 8];

        let mut rng = ReaderRng::new(MemReader::new(v.to_vec()));
        rng.fill_bytes(&mut w);

        assert!(v == w);
    }

    #[test]
    #[should_fail]
    fn test_reader_rng_insufficient_bytes() {
        let mut rng = ReaderRng::new(MemReader::new(vec!()));
        let mut v = [0u8; 3];
        rng.fill_bytes(&mut v);
    }
}