1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
use std::iter::repeat;
use libc::{c_int};

use ffi;

#[derive(Copy)]
pub enum Mode {
    Encrypt,
    Decrypt,
}

#[allow(non_camel_case_types)]
#[derive(Copy)]
pub enum Type {
    AES_128_ECB,
    AES_128_CBC,
    /// Requires the `aes_xts` feature
    #[cfg(feature = "aes_xts")]
    AES_128_XTS,
    // AES_128_CTR,
    //AES_128_GCM,

    AES_256_ECB,
    AES_256_CBC,
    /// Requires the `aes_xts` feature
    #[cfg(feature = "aes_xts")]
    AES_256_XTS,
    // AES_256_CTR,
    //AES_256_GCM,

    RC4_128,
}

fn evpc(t: Type) -> (*const ffi::EVP_CIPHER, u32, u32) {
    unsafe {
        match t {
            Type::AES_128_ECB => (ffi::EVP_aes_128_ecb(), 16, 16),
            Type::AES_128_CBC => (ffi::EVP_aes_128_cbc(), 16, 16),
            #[cfg(feature = "aes_xts")]
            Type::AES_128_XTS => (ffi::EVP_aes_128_xts(), 32, 16),
            // AES_128_CTR => (EVP_aes_128_ctr(), 16, 0),
            //AES_128_GCM => (EVP_aes_128_gcm(), 16, 16),

            Type::AES_256_ECB => (ffi::EVP_aes_256_ecb(), 32, 16),
            Type::AES_256_CBC => (ffi::EVP_aes_256_cbc(), 32, 16),
            #[cfg(feature = "aes_xts")]
            Type::AES_256_XTS => (ffi::EVP_aes_256_xts(), 64, 16),
            // AES_256_CTR => (EVP_aes_256_ctr(), 32, 0),
            //AES_256_GCM => (EVP_aes_256_gcm(), 32, 16),

            Type::RC4_128 => (ffi::EVP_rc4(), 16, 0),
        }
    }
}

/// Represents a symmetric cipher context.
pub struct Crypter {
    evp: *const ffi::EVP_CIPHER,
    ctx: *mut ffi::EVP_CIPHER_CTX,
    keylen: u32,
    blocksize: u32,
}

impl Crypter {
    pub fn new(t: Type) -> Crypter {
        ffi::init();

        let ctx = unsafe { ffi::EVP_CIPHER_CTX_new() };
        let (evp, keylen, blocksz) = evpc(t);
        Crypter { evp: evp, ctx: ctx, keylen: keylen, blocksize: blocksz }
    }

    /**
     * Enables or disables padding. If padding is disabled, total amount of
     * data encrypted must be a multiple of block size.
     */
    pub fn pad(&self, padding: bool) {
        if self.blocksize > 0 {
            unsafe {
                let v = if padding { 1 as c_int } else { 0 };
                ffi::EVP_CIPHER_CTX_set_padding(self.ctx, v);
            }
        }
    }

    /**
     * Initializes this crypter.
     */
    pub fn init(&self, mode: Mode, key: &[u8], iv: Vec<u8>) {
        unsafe {
            let mode = match mode {
                Mode::Encrypt => 1 as c_int,
                Mode::Decrypt => 0 as c_int,
            };
            assert_eq!(key.len(), self.keylen as usize);

            ffi::EVP_CipherInit(
                self.ctx,
                self.evp,
                key.as_ptr(),
                iv.as_ptr(),
                mode
            );
        }
    }

    /**
     * Update this crypter with more data to encrypt or decrypt. Returns
     * encrypted or decrypted bytes.
     */
    pub fn update(&self, data: &[u8]) -> Vec<u8> {
        unsafe {
            let sum = data.len() + (self.blocksize as usize);
            let mut res = repeat(0u8).take(sum).collect::<Vec<_>>();
            let mut reslen = sum as c_int;

            ffi::EVP_CipherUpdate(
                self.ctx,
                res.as_mut_ptr(),
                &mut reslen,
                data.as_ptr(),
                data.len() as c_int
            );

            res.truncate(reslen as usize);
            res
        }
    }

    /**
     * Finish crypting. Returns the remaining partial block of output, if any.
     */
    pub fn finalize(&self) -> Vec<u8> {
        unsafe {
            let mut res = repeat(0u8).take(self.blocksize as usize).collect::<Vec<_>>();
            let mut reslen = self.blocksize as c_int;

            ffi::EVP_CipherFinal(self.ctx,
                                       res.as_mut_ptr(),
                                       &mut reslen);

            res.truncate(reslen as usize);
            res
        }
    }
}

impl Drop for Crypter {
    fn drop(&mut self) {
        unsafe {
            ffi::EVP_CIPHER_CTX_free(self.ctx);
        }
    }
}

/**
 * Encrypts data, using the specified crypter type in encrypt mode with the
 * specified key and iv; returns the resulting (encrypted) data.
 */
pub fn encrypt(t: Type, key: &[u8], iv: Vec<u8>, data: &[u8]) -> Vec<u8> {
    let c = Crypter::new(t);
    c.init(Mode::Encrypt, key, iv);
    let mut r = c.update(data);
    let rest = c.finalize();
    r.extend(rest.into_iter());
    r
}

/**
 * Decrypts data, using the specified crypter type in decrypt mode with the
 * specified key and iv; returns the resulting (decrypted) data.
 */
pub fn decrypt(t: Type, key: &[u8], iv: Vec<u8>, data: &[u8]) -> Vec<u8> {
    let c = Crypter::new(t);
    c.init(Mode::Decrypt, key, iv);
    let mut r = c.update(data);
    let rest = c.finalize();
    r.extend(rest.into_iter());
    r
}

#[cfg(test)]
mod tests {
    use serialize::hex::FromHex;

    // Test vectors from FIPS-197:
    // http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
    #[test]
    fn test_aes_256_ecb() {
        let k0 =
           vec!(0x00u8, 0x01u8, 0x02u8, 0x03u8, 0x04u8, 0x05u8, 0x06u8, 0x07u8,
              0x08u8, 0x09u8, 0x0au8, 0x0bu8, 0x0cu8, 0x0du8, 0x0eu8, 0x0fu8,
              0x10u8, 0x11u8, 0x12u8, 0x13u8, 0x14u8, 0x15u8, 0x16u8, 0x17u8,
              0x18u8, 0x19u8, 0x1au8, 0x1bu8, 0x1cu8, 0x1du8, 0x1eu8, 0x1fu8);
        let p0 =
           vec!(0x00u8, 0x11u8, 0x22u8, 0x33u8, 0x44u8, 0x55u8, 0x66u8, 0x77u8,
              0x88u8, 0x99u8, 0xaau8, 0xbbu8, 0xccu8, 0xddu8, 0xeeu8, 0xffu8);
        let c0 =
           vec!(0x8eu8, 0xa2u8, 0xb7u8, 0xcau8, 0x51u8, 0x67u8, 0x45u8, 0xbfu8,
              0xeau8, 0xfcu8, 0x49u8, 0x90u8, 0x4bu8, 0x49u8, 0x60u8, 0x89u8);
        let c = super::Crypter::new(super::Type::AES_256_ECB);
        c.init(super::Mode::Encrypt, k0.as_slice(), vec![]);
        c.pad(false);
        let mut r0 = c.update(p0.as_slice());
        r0.extend(c.finalize().into_iter());
        assert!(r0 == c0);
        c.init(super::Mode::Decrypt, k0.as_slice(), vec![]);
        c.pad(false);
        let mut p1 = c.update(r0.as_slice());
        p1.extend(c.finalize().into_iter());
        assert!(p1 == p0);
    }

    #[test]
    fn test_aes_256_cbc_decrypt() {
        let cr = super::Crypter::new(super::Type::AES_256_CBC);
        let iv = vec![
            4_u8, 223_u8, 153_u8, 219_u8, 28_u8, 142_u8, 234_u8, 68_u8, 227_u8,
            69_u8, 98_u8, 107_u8, 208_u8, 14_u8, 236_u8, 60_u8, 0_u8, 0_u8,
            0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8,
            0_u8, 0_u8, 0_u8
        ];
        let data = [
            143_u8, 210_u8, 75_u8, 63_u8, 214_u8, 179_u8, 155_u8,
            241_u8, 242_u8, 31_u8, 154_u8, 56_u8, 198_u8, 145_u8, 192_u8, 64_u8,
            2_u8, 245_u8, 167_u8, 220_u8, 55_u8, 119_u8, 233_u8, 136_u8, 139_u8,
            27_u8, 71_u8, 242_u8, 119_u8, 175_u8, 65_u8, 207_u8
        ];
        let ciphered_data = [
            0x4a_u8, 0x2e_u8, 0xe5_u8, 0x6_u8, 0xbf_u8, 0xcf_u8, 0xf2_u8, 0xd7_u8,
            0xea_u8, 0x2d_u8, 0xb1_u8, 0x85_u8, 0x6c_u8, 0x93_u8, 0x65_u8, 0x6f_u8
            ];
        cr.init(super::Mode::Decrypt, &data, iv);
        cr.pad(false);
        let unciphered_data_1 = cr.update(&ciphered_data);
        let unciphered_data_2 = cr.finalize();

        let expected_unciphered_data = b"I love turtles.\x01";

        assert!(unciphered_data_2.len() == 0);

        assert_eq!(
            unciphered_data_1.as_slice(),
            expected_unciphered_data
        );
    }

    fn cipher_test(ciphertype: super::Type, pt: &str, ct: &str, key: &str, iv: &str) {
        use serialize::hex::ToHex;

        let cipher = super::Crypter::new(ciphertype);
        cipher.init(super::Mode::Encrypt, key.from_hex().unwrap().as_slice(), iv.from_hex().unwrap());

        let expected = ct.from_hex().unwrap().as_slice().to_vec();
        let mut computed = cipher.update(pt.from_hex().unwrap().as_slice());
        computed.extend(cipher.finalize().into_iter());

        if computed != expected {
            println!("Computed: {}", computed.as_slice().to_hex());
            println!("Expected: {}", expected.as_slice().to_hex());
            if computed.len() != expected.len() {
                println!("Lengths differ: {} in computed vs {} expected",
                         computed.len(), expected.len());
            }
            panic!("test failure");
        }
    }

    #[test]
    fn test_rc4() {

        let pt = "0000000000000000000000000000000000000000000000000000000000000000000000000000";
        let ct = "A68686B04D686AA107BD8D4CAB191A3EEC0A6294BC78B60F65C25CB47BD7BB3A48EFC4D26BE4";
        let key = "97CD440324DA5FD1F7955C1C13B6B466";
        let iv = "";

        cipher_test(super::Type::RC4_128, pt, ct, key, iv);
    }

    #[test]
    #[cfg(feature = "aes_xts")]
    fn test_aes256_xts() {
        // Test case 174 from
        // http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSTestVectors.zip
        let pt = "77f4ef63d734ebd028508da66c22cdebdd52ecd6ee2ab0a50bc8ad0cfd692ca5fcd4e6dedc45df7f6503f462611dc542";
        let ct = "ce7d905a7776ac72f240d22aafed5e4eb7566cdc7211220e970da634ce015f131a5ecb8d400bc9e84f0b81d8725dbbc7";
        let key = "b6bfef891f83b5ff073f2231267be51eb084b791fa19a154399c0684c8b2dfcb37de77d28bbda3b4180026ad640b74243b3133e7b9fae629403f6733423dae28";
        let iv = "db200efb7eaaa737dbdf40babb68953f";

        cipher_test(super::Type::AES_256_XTS, pt, ct, key, iv);
    }

    /*#[test]
    fn test_aes128_ctr() {

        let pt = ~"6BC1BEE22E409F96E93D7E117393172AAE2D8A571E03AC9C9EB76FAC45AF8E5130C81C46A35CE411E5FBC1191A0A52EFF69F2445DF4F9B17AD2B417BE66C3710";
        let ct = ~"874D6191B620E3261BEF6864990DB6CE9806F66B7970FDFF8617187BB9FFFDFF5AE4DF3EDBD5D35E5B4F09020DB03EAB1E031DDA2FBE03D1792170A0F3009CEE";
        let key = ~"2B7E151628AED2A6ABF7158809CF4F3C";
        let iv = ~"F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF";

        cipher_test(super::AES_128_CTR, pt, ct, key, iv);
    }*/

    /*#[test]
    fn test_aes128_gcm() {
        // Test case 3 in GCM spec
        let pt = ~"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b391aafd255";
        let ct = ~"42831ec2217774244b7221b784d0d49ce3aa212f2c02a4e035c17e2329aca12e21d514b25466931c7d8f6a5aac84aa051ba30b396a0aac973d58e091473f59854d5c2af327cd64a62cf35abd2ba6fab4";
        let key = ~"feffe9928665731c6d6a8f9467308308";
        let iv = ~"cafebabefacedbaddecaf888";

        cipher_test(super::AES_128_GCM, pt, ct, key, iv);
    }*/
}