1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

// TODO - Optimize the XORs
// TODO - Maybe use macros to specialize BlockEngine for encryption or decryption?
// TODO - I think padding could be done better. Maybe macros for BlockEngine would help this too.

use std::cmp;
use std::iter::repeat;
use std::slice;

use buffer::{ReadBuffer, WriteBuffer, OwnedReadBuffer, OwnedWriteBuffer, BufferResult,
    RefReadBuffer, RefWriteBuffer};
use buffer::BufferResult::{BufferUnderflow, BufferOverflow};
use cryptoutil::symm_enc_or_dec;
use symmetriccipher::{BlockEncryptor, BlockEncryptorX8, Encryptor, BlockDecryptor, Decryptor,
    SynchronousStreamCipher, SymmetricCipherError};
use symmetriccipher::SymmetricCipherError::{InvalidPadding, InvalidLength};

/// The BlockProcessor trait is used to implement modes that require processing complete blocks of
/// data. The methods of this trait are called by the BlockEngine which is in charge of properly
/// buffering input data.
trait BlockProcessor {
    /// Process a block of data. The in_hist and out_hist parameters represent the input and output
    /// when the last block was processed. These values are necessary for certain modes.
    fn process_block(&mut self, in_hist: &[u8], out_hist: &[u8], input: &[u8], output: &mut [u8]);
}

/// A PaddingProcessor handles adding or removing padding
pub trait PaddingProcessor {
    /// Add padding to the last block of input data
    /// If the mode can't handle a non-full block, it signals that error by simply leaving the block
    /// as it is which will be detected as an InvalidLength error.
    fn pad_input<W: WriteBuffer>(&mut self, input_buffer: &mut W);

    /// Remove padding from the last block of output data
    /// If false is returned, the processing fails
    fn strip_output<R: ReadBuffer>(&mut self, output_buffer: &mut R) -> bool;
}

/// The BlockEngine is implemented as a state machine with the following states. See comments in the
/// BlockEngine code for more information on the states.
#[derive(Copy)]
enum BlockEngineState {
    FastMode,
    NeedInput,
    NeedOutput,
    LastInput,
    LastInput2,
    Finished,
    Error(SymmetricCipherError)
}

/// BlockEngine buffers input and output data and handles sending complete block of data to the
/// Processor object. Additionally, BlockEngine handles logic necessary to add or remove padding by
/// calling the appropriate methods on the Processor object.
struct BlockEngine<P, X> {
    /// The block sized expected by the Processor
    block_size: usize,

    /// in_hist and out_hist keep track of data that was input to and output from the last
    /// invocation of the process_block() method of the Processor. Depending on the mode, these may
    /// be empty vectors if history is not needed.
    in_hist: Vec<u8>,
    out_hist: Vec<u8>,

    /// If some input data is supplied, but not a complete blocks worth, it is stored in this buffer
    /// until enough arrives that it can be passed to the process_block() method of the Processor.
    in_scratch: OwnedWriteBuffer,

    /// If input data is processed but there isn't enough space in the output buffer to store it,
    /// it is written into out_write_scratch. OwnedWriteBuffer's may be converted into
    /// OwnedReaderBuffers without re-allocating, so, after being written, out_write_scratch is
    /// turned into out_read_scratch. After that, if is written to the output as more output becomes
    /// available. The main point is - only out_write_scratch or out_read_scratch contains a value
    /// at any given time; never both.
    out_write_scratch: Option<OwnedWriteBuffer>,
    out_read_scratch: Option<OwnedReadBuffer>,

    /// The processor that implements the particular block mode.
    processor: P,

    /// The padding processor
    padding: X,

    /// The current state of the operation.
    state: BlockEngineState
}

fn update_history(in_hist: &mut [u8], out_hist: &mut [u8], last_in: &[u8], last_out: &[u8]) {
    let in_hist_len = in_hist.len();
    if in_hist_len > 0 {
        slice::bytes::copy_memory(
            in_hist,
            &last_in[last_in.len() - in_hist_len..]);
    }
    let out_hist_len = out_hist.len();
    if out_hist_len > 0 {
        slice::bytes::copy_memory(
            out_hist,
            &last_out[last_out.len() - out_hist_len..]);
    }
}

impl <P: BlockProcessor, X: PaddingProcessor> BlockEngine<P, X> {
    /// Create a new BlockProcessor instance with the given processor and block_size. No history
    /// will be saved.
    fn new(processor: P, padding: X, block_size: usize) -> BlockEngine<P, X> {
        BlockEngine {
            block_size: block_size,
            in_hist: Vec::new(),
            out_hist: Vec::new(),
            in_scratch: OwnedWriteBuffer::new(repeat(0).take(block_size).collect()),
            out_write_scratch: Some(OwnedWriteBuffer::new(repeat(0).take(block_size).collect())),
            out_read_scratch: None,
            processor: processor,
            padding: padding,
            state: BlockEngineState::FastMode
        }
    }

    /// Create a new BlockProcessor instance with the given processor, block_size, and initial input
    /// and output history.
    fn new_with_history(
            processor: P,
            padding: X,
            block_size: usize,
            in_hist: Vec<u8>,
            out_hist: Vec<u8>) -> BlockEngine<P, X> {
        BlockEngine {
            in_hist: in_hist,
            out_hist: out_hist,
            ..BlockEngine::new(processor, padding, block_size)
        }
    }

    /// This implements the FastMode state. Ideally, the encryption or decryption operation should
    /// do the bulk of its work in FastMode. Significantly, FastMode avoids doing copies as much as
    /// possible. The FastMode state does not handle the final block of data.
    fn fast_mode<R: ReadBuffer, W: WriteBuffer>(
            &mut self,
            input: &mut R,
            output: &mut W) -> BlockEngineState {
        fn has_next<R: ReadBuffer, W: WriteBuffer>(
                input: &mut R,
                output: &mut W,
                block_size: usize) -> bool {
            // Not the greater than - very important since this method must never process the last
            // block.
            let enough_input = input.remaining() > block_size;
            let enough_output = output.remaining() >= block_size;
            enough_input && enough_output
        };
        fn split_at<'a>(vec: &'a [u8], at: usize) -> (&'a [u8], &'a [u8]) {
            (&vec[..at], &vec[at..])
        }

        // First block processing. We have to retrieve the history information from self.in_hist and
        // self.out_hist.
        if !has_next(input, output, self.block_size) {
            if input.is_empty() {
                return BlockEngineState::FastMode;
            } else {
                return BlockEngineState::NeedInput;
            }
        } else {
            let next_in = input.take_next(self.block_size);
            let next_out = output.take_next(self.block_size);
            self.processor.process_block(
                &self.in_hist[..],
                &self.out_hist[..],
                next_in,
                next_out);
        }

        // Process all remaing blocks. We can pull the history out of the buffers without having to
        // do any copies
        let next_in_size = self.in_hist.len() + self.block_size;
        let next_out_size = self.out_hist.len() + self.block_size;
        while has_next(input, output, self.block_size) {
            input.rewind(self.in_hist.len());
            let (in_hist, next_in) = split_at(input.take_next(next_in_size), self.in_hist.len());
            output.rewind(self.out_hist.len());
            let (out_hist, next_out) = output.take_next(next_out_size).split_at_mut(
                self.out_hist.len());
            self.processor.process_block(
                in_hist,
                out_hist,
                next_in,
                next_out);
        }

        // Save the history and then transition to the next state
        {
            input.rewind(self.in_hist.len());
            let last_in = input.take_next(self.in_hist.len());
            output.rewind(self.out_hist.len());
            let last_out = output.take_next(self.out_hist.len());
            update_history(
                self.in_hist.as_mut_slice(),
                self.out_hist.as_mut_slice(),
                last_in,
                last_out);
        }
        if input.is_empty() {
            BlockEngineState::FastMode
        } else {
            BlockEngineState::NeedInput
        }
    }

    /// This method implements the BlockEngine state machine.
    fn process<R: ReadBuffer, W: WriteBuffer>(
            &mut self,
            input: &mut R,
            output: &mut W,
            eof: bool) -> Result<BufferResult, SymmetricCipherError> {
        // Process a block of data from in_scratch and write the result to out_write_scratch.
        // Finally, convert out_write_scratch into out_read_scratch.
        fn process_scratch<P: BlockProcessor, X: PaddingProcessor>(me: &mut BlockEngine<P, X>) {
            let mut rin = me.in_scratch.take_read_buffer();
            let mut wout = me.out_write_scratch.take().unwrap();

            {
                let next_in = rin.take_remaining();
                let next_out = wout.take_remaining();
                me.processor.process_block(
                    &me.in_hist[..],
                    &me.out_hist[..],
                    next_in,
                    next_out);
                update_history(
                    me.in_hist.as_mut_slice(),
                    me.out_hist.as_mut_slice(),
                    next_in,
                    next_out);
            }

            let rb = wout.into_read_buffer();
            me.out_read_scratch = Some(rb);
        };

        loop {
            match self.state {
                // FastMode tries to process as much data as possible while minimizing copies.
                // FastMode doesn't make use of the scratch buffers and only updates the history
                // just before exiting.
                BlockEngineState::FastMode => {
                    self.state = self.fast_mode(input, output);
                    match self.state {
                        BlockEngineState::FastMode => {
                            // If FastMode completes but stays in the FastMode state, it means that
                            // we've run out of input data.
                            return Ok(BufferUnderflow);
                        }
                        _ => {}
                    }
                }

                // The NeedInput mode is entered when there isn't enough data to run in FastMode
                // anymore. Input data is buffered in in_scratch until there is a full block or eof
                // occurs. IF eof doesn't occur, the data is processed and then we go to the
                // NeedOutput state. Otherwise, we go to the LastInput state. This state always
                // writes all available data into in_scratch before transitioning to the next state.
                BlockEngineState::NeedInput => {
                    input.push_to(&mut self.in_scratch);
                    if !input.is_empty() {
                        // !is_empty() guarantees two things - in_scratch is full and its not the
                        // last block. This state must never process the last block.
                        process_scratch(self);
                        self.state = BlockEngineState::NeedOutput;
                    } else {
                        if eof {
                            self.state = BlockEngineState::LastInput;
                        } else {
                            return Ok(BufferUnderflow);
                        }
                    }
                }

                // The NeedOutput state just writes buffered processed data to the output stream
                // until all of it has been written.
                BlockEngineState::NeedOutput => {
                    let mut rout = self.out_read_scratch.take().unwrap();
                    rout.push_to(output);
                    if rout.is_empty() {
                        self.out_write_scratch = Some(rout.into_write_buffer());
                        self.state = BlockEngineState::FastMode;
                    } else {
                        self.out_read_scratch = Some(rout);
                        return Ok(BufferOverflow);
                    }
                }

                // None of the other states are allowed to process the last block of data since
                // last block handling is a little tricky due to modes have special needs regarding
                // padding. When the last block of data is detected, this state is transitioned to
                // for handling.
                BlockEngineState::LastInput => {
                    // We we arrive in this state, we know that all input data that is going to be
                    // supplied has been suplied and that that data has been written to in_scratch
                    // by the NeedInput state. Furthermore, we know that one of three things must be
                    // true about in_scratch:
                    // 1) It is empty. This only occurs if the input is zero length. We can do last
                    //    block processing by executing the pad_input() method of the processor
                    //    which may either pad out to a full block or leave it empty, process the
                    //    data if it was padded out to a full block, and then pass it to
                    //    strip_output().
                    // 2) It is partially filled. This will occur if the input data was not a
                    //    multiple of the block size. Processing proceeds identically to case #1.
                    // 3) It is full. This case occurs when the input data was a multiple of the
                    //    block size. This case is a little trickier, since, depending on the mode,
                    //    we might actually have 2 blocks worth of data to process - the last user
                    //    supplied block (currently in in_scratch) and then another block that could
                    //    be added as padding. Processing proceeds by first processing the data in
                    //    in_scratch and writing it to out_scratch. Then, the now-empty in_scratch
                    //    buffer is passed to pad_input() which may leave it empty or write a block
                    //    of padding to it. If no padding is added, processing proceeds as in cases
                    //    #1 and #2. However, if padding is added, now have data in in_scratch and
                    //    also in out_scratch meaning that we can't immediately process the padding
                    //    data since we have nowhere to put it. So, we transition to the LastInput2
                    //    state which will first write out the last non-padding block, then process
                    //    the padding block (in in_scratch) and write it to the now-empty
                    //    out_scratch.
                    if !self.in_scratch.is_full() {
                        self.padding.pad_input(&mut self.in_scratch);
                        if self.in_scratch.is_full() {
                            process_scratch(self);
                            if self.padding.strip_output(self.out_read_scratch.as_mut().unwrap()) {
                                self.state = BlockEngineState::Finished;
                            } else {
                                self.state = BlockEngineState::Error(InvalidPadding);
                            }
                        } else if self.in_scratch.is_empty() {
                            self.state = BlockEngineState::Finished;
                        } else {
                            self.state = BlockEngineState::Error(InvalidLength);
                        }
                    } else {
                        process_scratch(self);
                        self.padding.pad_input(&mut self.in_scratch);
                        if self.in_scratch.is_full() {
                            self.state = BlockEngineState::LastInput2;
                        } else if self.in_scratch.is_empty() {
                            if self.padding.strip_output(self.out_read_scratch.as_mut().unwrap()) {
                                self.state = BlockEngineState::Finished;
                            } else {
                                self.state = BlockEngineState::Error(InvalidPadding);
                            }
                        } else {
                            self.state = BlockEngineState::Error(InvalidLength);
                        }
                    }
                }

                // See the comments on LastInput for more details. This state handles final blocks
                // of data in the case that the input was a multiple of the block size and the mode
                // decided to add a full extra block of padding.
                BlockEngineState::LastInput2 => {
                    let mut rout = self.out_read_scratch.take().unwrap();
                    rout.push_to(output);
                    if rout.is_empty() {
                        self.out_write_scratch = Some(rout.into_write_buffer());
                        process_scratch(self);
                        if self.padding.strip_output(self.out_read_scratch.as_mut().unwrap()) {
                            self.state = BlockEngineState::Finished;
                        } else {
                            self.state = BlockEngineState::Error(InvalidPadding);
                        }
                    } else {
                        self.out_read_scratch = Some(rout);
                        return Ok(BufferOverflow);
                    }
                }

                // The Finished mode just writes the data in out_scratch to the output until there
                // is no more data left.
                BlockEngineState::Finished => {
                    match self.out_read_scratch {
                        Some(ref mut rout) => {
                            rout.push_to(output);
                            if rout.is_empty() {
                                return Ok(BufferUnderflow);
                            } else {
                                return Ok(BufferOverflow);
                            }
                        }
                        None => { return Ok(BufferUnderflow); }
                    }
                }

                // The Error state is used to store error information.
                BlockEngineState::Error(err) => {
                    return Err(err);
                }
            }
        }
    }
    fn reset(&mut self) {
        self.state = BlockEngineState::FastMode;
        self.in_scratch.reset();
        if self.out_read_scratch.is_some() {
            let ors = self.out_read_scratch.take().unwrap();
            let ows = ors.into_write_buffer();
            self.out_write_scratch = Some(ows);
        } else {
            self.out_write_scratch.as_mut().unwrap().reset();
        }
    }
    fn reset_with_history(&mut self, in_hist: &[u8], out_hist: &[u8]) {
        self.reset();
        slice::bytes::copy_memory(self.in_hist.as_mut_slice(), in_hist);
        slice::bytes::copy_memory(self.out_hist.as_mut_slice(), out_hist);
    }
}

/// No padding mode for ECB and CBC encryption
#[derive(Copy)]
pub struct NoPadding;

impl PaddingProcessor for NoPadding {
    fn pad_input<W: WriteBuffer>(&mut self, _: &mut W) { }
    fn strip_output<R: ReadBuffer>(&mut self, _: &mut R) -> bool { true }
}

/// PKCS padding mode for ECB and CBC encryption
#[derive(Copy)]
pub struct PkcsPadding;

// This class implements both encryption padding, where padding is added, and decryption padding,
// where padding is stripped. Since BlockEngine doesn't know if its an Encryption or Decryption
// operation, it will call both methods if given a chance. So, this class can't be passed directly
// to BlockEngine. Instead, it must be wrapped with EncPadding or DecPadding which will ensure that
// only the propper methods are called. The client of the library, however, doesn't have to
// distinguish encryption padding handling from decryption padding handline, which is the whole
// point.
impl PaddingProcessor for PkcsPadding {
    fn pad_input<W: WriteBuffer>(&mut self, input_buffer: &mut W) {
        let rem = input_buffer.remaining();
        assert!(rem != 0 && rem <= 255);
        for v in input_buffer.take_remaining().iter_mut() {
            *v = rem as u8;
        }
    }
    fn strip_output<R: ReadBuffer>(&mut self, output_buffer: &mut R) -> bool {
        let last_byte: u8;
        {
            let data = output_buffer.peek_remaining();
            last_byte = *data.last().unwrap();
            for &x in data.iter().rev().take(last_byte as usize) {
                if x != last_byte {
                    return false;
                }
            }
        }
        output_buffer.truncate(last_byte as usize);
        true
    }
}

/// Wraps a PaddingProcessor so that only pad_input() will actually be called.
pub struct EncPadding<X> {
    padding: X
}

impl <X: PaddingProcessor> EncPadding<X> {
    fn wrap(p: X) -> EncPadding<X> { EncPadding { padding: p } }
}

impl <X: PaddingProcessor> PaddingProcessor for EncPadding<X> {
    fn pad_input<W: WriteBuffer>(&mut self, a: &mut W) { self.padding.pad_input(a); }
    fn strip_output<R: ReadBuffer>(&mut self, _: &mut R) -> bool { true }
}

/// Wraps a PaddingProcessor so that only strip_output() will actually be called.
pub struct DecPadding<X> {
    padding: X
}

impl <X: PaddingProcessor> DecPadding<X> {
    fn wrap(p: X) -> DecPadding<X> { DecPadding { padding: p } }
}

impl <X: PaddingProcessor> PaddingProcessor for DecPadding<X> {
    fn pad_input<W: WriteBuffer>(&mut self, _: &mut W) { }
    fn strip_output<R: ReadBuffer>(&mut self, a: &mut R) -> bool { self.padding.strip_output(a) }
}

struct EcbEncryptorProcessor<T> {
    algo: T
}

impl <T: BlockEncryptor> BlockProcessor for EcbEncryptorProcessor<T> {
    fn process_block(&mut self, _: &[u8], _: &[u8], input: &[u8], output: &mut [u8]) {
        self.algo.encrypt_block(input, output);
    }
}

/// ECB Encryption mode
pub struct EcbEncryptor<T, X> {
    block_engine: BlockEngine<EcbEncryptorProcessor<T>, X>
}

impl <T: BlockEncryptor, X: PaddingProcessor> EcbEncryptor<T, X> {
    /// Create a new ECB encryption mode object
    pub fn new(algo: T, padding: X) -> EcbEncryptor<T, EncPadding<X>> {
        let block_size = algo.block_size();
        let processor = EcbEncryptorProcessor {
            algo: algo
        };
        EcbEncryptor {
            block_engine: BlockEngine::new(processor, EncPadding::wrap(padding), block_size)
        }
    }
    pub fn reset(&mut self) {
        self.block_engine.reset();
    }
}

impl <T: BlockEncryptor, X: PaddingProcessor> Encryptor for EcbEncryptor<T, X> {
    fn encrypt(&mut self, input: &mut RefReadBuffer, output: &mut RefWriteBuffer, eof: bool)
            -> Result<BufferResult, SymmetricCipherError> {
        self.block_engine.process(input, output, eof)
    }
}

struct EcbDecryptorProcessor<T> {
    algo: T
}

impl <T: BlockDecryptor> BlockProcessor for EcbDecryptorProcessor<T> {
    fn process_block(&mut self, _: &[u8], _: &[u8], input: &[u8], output: &mut [u8]) {
        self.algo.decrypt_block(input, output);
    }
}

/// ECB Decryption mode
pub struct EcbDecryptor<T, X> {
    block_engine: BlockEngine<EcbDecryptorProcessor<T>, X>
}

impl <T: BlockDecryptor, X: PaddingProcessor> EcbDecryptor<T, X> {
    /// Create a new ECB decryption mode object
    pub fn new(algo: T, padding: X) -> EcbDecryptor<T, DecPadding<X>> {
        let block_size = algo.block_size();
        let processor = EcbDecryptorProcessor {
            algo: algo
        };
        EcbDecryptor {
            block_engine: BlockEngine::new(processor, DecPadding::wrap(padding), block_size)
        }
    }
    pub fn reset(&mut self) {
        self.block_engine.reset();
    }
}

impl <T: BlockDecryptor, X: PaddingProcessor> Decryptor for EcbDecryptor<T, X> {
    fn decrypt(&mut self, input: &mut RefReadBuffer, output: &mut RefWriteBuffer, eof: bool)
            -> Result<BufferResult, SymmetricCipherError> {
        self.block_engine.process(input, output, eof)
    }
}

struct CbcEncryptorProcessor<T> {
    algo: T,
    temp: Vec<u8>
}

impl <T: BlockEncryptor> BlockProcessor for CbcEncryptorProcessor<T> {
    fn process_block(&mut self, _: &[u8], out_hist: &[u8], input: &[u8], output: &mut [u8]) {
        for ((&x, &y), o) in input.iter().zip(out_hist.iter()).zip(self.temp.iter_mut()) {
            *o = x ^ y;
        }
        self.algo.encrypt_block(&self.temp[..], output.as_mut_slice());
    }
}

/// CBC encryption mode
pub struct CbcEncryptor<T, X> {
    block_engine: BlockEngine<CbcEncryptorProcessor<T>, X>
}

impl <T: BlockEncryptor, X: PaddingProcessor> CbcEncryptor<T, X> {
    /// Create a new CBC encryption mode object
    pub fn new(algo: T, padding: X, iv: Vec<u8>) -> CbcEncryptor<T, EncPadding<X>> {
        let block_size = algo.block_size();
        let processor = CbcEncryptorProcessor {
            algo: algo,
            temp: repeat(0).take(block_size).collect()
        };
        CbcEncryptor {
            block_engine: BlockEngine::new_with_history(
                processor,
                EncPadding::wrap(padding),
                block_size,
                Vec::new(),
                iv)
        }
    }
    pub fn reset(&mut self, iv: &[u8]) {
        self.block_engine.reset_with_history(&[], iv);
    }
}

impl <T: BlockEncryptor, X: PaddingProcessor> Encryptor for CbcEncryptor<T, X> {
    fn encrypt(&mut self, input: &mut RefReadBuffer, output: &mut RefWriteBuffer, eof: bool)
            -> Result<BufferResult, SymmetricCipherError> {
        self.block_engine.process(input, output, eof)
    }
}

struct CbcDecryptorProcessor<T> {
    algo: T,
    temp: Vec<u8>
}

impl <T: BlockDecryptor> BlockProcessor for CbcDecryptorProcessor<T> {
    fn process_block(&mut self, in_hist: &[u8], _: &[u8], input: &[u8], output: &mut [u8]) {
        self.algo.decrypt_block(input, self.temp.as_mut_slice());
        for ((&x, &y), o) in self.temp.iter().zip(in_hist.iter()).zip(output.iter_mut()) {
            *o = x ^ y;
        }
    }
}

/// CBC decryption mode
pub struct CbcDecryptor<T, X> {
    block_engine: BlockEngine<CbcDecryptorProcessor<T>, X>
}

impl <T: BlockDecryptor, X: PaddingProcessor> CbcDecryptor<T, X> {
    /// Create a new CBC decryption mode object
    pub fn new(algo: T, padding: X, iv: Vec<u8>) -> CbcDecryptor<T, DecPadding<X>> {
        let block_size = algo.block_size();
        let processor = CbcDecryptorProcessor {
            algo: algo,
            temp: repeat(0).take(block_size).collect()
        };
        CbcDecryptor {
            block_engine: BlockEngine::new_with_history(
                processor,
                DecPadding::wrap(padding),
                block_size,
                iv,
                Vec::new())
        }
    }
    pub fn reset(&mut self, iv: &[u8]) {
        self.block_engine.reset_with_history(iv, &[]);
    }
}

impl <T: BlockDecryptor, X: PaddingProcessor> Decryptor for CbcDecryptor<T, X> {
    fn decrypt(&mut self, input: &mut RefReadBuffer, output: &mut RefWriteBuffer, eof: bool)
            -> Result<BufferResult, SymmetricCipherError> {
        self.block_engine.process(input, output, eof)
    }
}

fn add_ctr(ctr: &mut [u8], mut ammount: u8) {
    for i in ctr.iter_mut().rev() {
        let prev = *i;
        *i += ammount;
        if *i >= prev {
            break;
        }
        ammount = 1;
    }
}

/// CTR Mode
pub struct CtrMode<A> {
    algo: A,
    ctr: Vec<u8>,
    bytes: OwnedReadBuffer
}

impl <A: BlockEncryptor> CtrMode<A> {
    /// Create a new CTR object
    pub fn new(algo: A, ctr: Vec<u8>) -> CtrMode<A> {
        let block_size = algo.block_size();
        CtrMode {
            algo: algo,
            ctr: ctr,
            bytes: OwnedReadBuffer::new_with_len(repeat(0).take(block_size).collect(), 0)
        }
    }
    pub fn reset(&mut self, ctr: &[u8]) {
        slice::bytes::copy_memory(self.ctr.as_mut_slice(), ctr);
        self.bytes.reset();
    }
    fn process(&mut self, input: &[u8], output: &mut [u8]) {
        assert!(input.len() == output.len());
        let len = input.len();
        let mut i = 0;
        while i < len {
            if self.bytes.is_empty() {
                let mut wb = self.bytes.borrow_write_buffer();
                self.algo.encrypt_block(&self.ctr[..], wb.take_remaining());
                add_ctr(self.ctr.as_mut_slice(), 1);
            }
            let count = cmp::min(self.bytes.remaining(), len - i);
            let bytes_it = self.bytes.take_next(count).iter();
            let in_it = input[i..].iter();
            let out_it = output[i..].iter_mut();
            for ((&x, &y), o) in bytes_it.zip(in_it).zip(out_it) {
                *o = x ^ y;
            }
            i += count;
        }
    }
}

impl <A: BlockEncryptor> SynchronousStreamCipher for CtrMode<A> {
    fn process(&mut self, input: &[u8], output: &mut [u8]) {
        self.process(input, output);
    }
}

impl <A: BlockEncryptor> Encryptor for CtrMode<A> {
    fn encrypt(&mut self, input: &mut RefReadBuffer, output: &mut RefWriteBuffer, _: bool)
            -> Result<BufferResult, SymmetricCipherError> {
        symm_enc_or_dec(self, input, output)
    }
}

impl <A: BlockEncryptor> Decryptor for CtrMode<A> {
    fn decrypt(&mut self, input: &mut RefReadBuffer, output: &mut RefWriteBuffer, _: bool)
            -> Result<BufferResult, SymmetricCipherError> {
        symm_enc_or_dec(self, input, output)
    }
}

/// CTR Mode that operates on 8 blocks at a time
pub struct CtrModeX8<A> {
    algo: A,
    ctr_x8: Vec<u8>,
    bytes: OwnedReadBuffer
}

fn construct_ctr_x8(in_ctr: &[u8], out_ctr_x8: &mut [u8]) {
    for (i, ctr_i) in out_ctr_x8.chunks_mut(in_ctr.len()).enumerate() {
        slice::bytes::copy_memory(ctr_i, in_ctr);
        add_ctr(ctr_i, i as u8);
    }
}

impl <A: BlockEncryptorX8> CtrModeX8<A> {
    /// Create a new CTR object that operates on 8 blocks at a time
    pub fn new(algo: A, ctr: &[u8]) -> CtrModeX8<A> {
        let block_size = algo.block_size();
        let mut ctr_x8: Vec<u8> = repeat(0).take(block_size * 8).collect();
        construct_ctr_x8(ctr, ctr_x8.as_mut_slice());
        CtrModeX8 {
            algo: algo,
            ctr_x8: ctr_x8,
            bytes: OwnedReadBuffer::new_with_len(repeat(0).take(block_size * 8).collect(), 0)
        }
    }
    pub fn reset(&mut self, ctr: &[u8]) {
        construct_ctr_x8(ctr, self.ctr_x8.as_mut_slice());
        self.bytes.reset();
    }
    fn process(&mut self, input: &[u8], output: &mut [u8]) {
        // TODO - Can some of this be combined with regular CtrMode?
        assert!(input.len() == output.len());
        let len = input.len();
        let mut i = 0;
        while i < len {
            if self.bytes.is_empty() {
                let mut wb = self.bytes.borrow_write_buffer();
                self.algo.encrypt_block_x8(&self.ctr_x8[..], wb.take_remaining());
                for ctr_i in self.ctr_x8.as_mut_slice().chunks_mut(self.algo.block_size()) {
                    add_ctr(ctr_i, 8);
                }
            }
            let count = cmp::min(self.bytes.remaining(), len - i);
            let bytes_it = self.bytes.take_next(count).iter();
            let in_it = input[i..].iter();
            let out_it = &mut output[i..];
            for ((&x, &y), o) in bytes_it.zip(in_it).zip(out_it.iter_mut()) {
                *o = x ^ y;
            }
            i += count;
        }
    }
}

impl <A: BlockEncryptorX8> SynchronousStreamCipher for CtrModeX8<A> {
    fn process(&mut self, input: &[u8], output: &mut [u8]) {
        self.process(input, output);
    }
}

impl <A: BlockEncryptorX8> Encryptor for CtrModeX8<A> {
    fn encrypt(&mut self, input: &mut RefReadBuffer, output: &mut RefWriteBuffer, _: bool)
            -> Result<BufferResult, SymmetricCipherError> {
        symm_enc_or_dec(self, input, output)
    }
}

impl <A: BlockEncryptorX8> Decryptor for CtrModeX8<A> {
    fn decrypt(&mut self, input: &mut RefReadBuffer, output: &mut RefWriteBuffer, _: bool)
            -> Result<BufferResult, SymmetricCipherError> {
        symm_enc_or_dec(self, input, output)
    }
}

#[cfg(test)]
mod test {
    use std::iter::repeat;

    use aessafe;
    use blockmodes::{EcbEncryptor, EcbDecryptor, CbcEncryptor, CbcDecryptor, CtrMode, CtrModeX8,
        NoPadding, PkcsPadding};
    use buffer::{ReadBuffer, WriteBuffer, RefReadBuffer, RefWriteBuffer, BufferResult};
    use buffer::BufferResult::{BufferUnderflow, BufferOverflow};
    use symmetriccipher::{Encryptor, Decryptor};
    use symmetriccipher::SymmetricCipherError::{self, InvalidLength, InvalidPadding};

    use std::cmp;
    use test::Bencher;

    trait CipherTest {
        fn get_plain<'a>(&'a self) -> &'a [u8];
        fn get_cipher<'a>(&'a self) -> &'a [u8];
    }

    struct EcbTest {
        key: Vec<u8>,
        plain: Vec<u8>,
        cipher: Vec<u8>
    }

    impl CipherTest for EcbTest {
        fn get_plain<'a>(&'a self) -> &'a [u8] {
            &self.plain[..]
        }
        fn get_cipher<'a>(&'a self) -> &'a [u8] {
            &self.cipher[..]
        }
    }

    struct CbcTest {
        key: Vec<u8>,
        iv: Vec<u8>,
        plain: Vec<u8>,
        cipher: Vec<u8>
    }

    impl CipherTest for CbcTest {
        fn get_plain<'a>(&'a self) -> &'a [u8] {
            &self.plain[..]
        }
        fn get_cipher<'a>(&'a self) -> &'a [u8] {
            &self.cipher[..]
        }
    }

    struct CtrTest {
        key: Vec<u8>,
        ctr: Vec<u8>,
        plain: Vec<u8>,
        cipher: Vec<u8>
    }

    impl CipherTest for CtrTest {
        fn get_plain<'a>(&'a self) -> &'a [u8] {
            &self.plain[..]
        }
        fn get_cipher<'a>(&'a self) -> &'a [u8] {
            &self.cipher[..]
        }
    }

    fn aes_ecb_no_padding_tests() -> Vec<EcbTest> {
        vec![
            EcbTest {
                key: repeat(0).take(16).collect(),
                plain: repeat(0).take(32).collect(),
                cipher: vec![
                    0x66, 0xe9, 0x4b, 0xd4, 0xef, 0x8a, 0x2c, 0x3b,
                    0x88, 0x4c, 0xfa, 0x59, 0xca, 0x34, 0x2b, 0x2e,
                    0x66, 0xe9, 0x4b, 0xd4, 0xef, 0x8a, 0x2c, 0x3b,
                    0x88, 0x4c, 0xfa, 0x59, 0xca, 0x34, 0x2b, 0x2e ]
            }
        ]
    }

    fn aes_ecb_pkcs_padding_tests() -> Vec<EcbTest> {
        vec![
            EcbTest {
                key: repeat(0).take(16).collect(),
                plain: repeat(0).take(32).collect(),
                cipher: vec![
                    0x66, 0xe9, 0x4b, 0xd4, 0xef, 0x8a, 0x2c, 0x3b,
                    0x88, 0x4c, 0xfa, 0x59, 0xca, 0x34, 0x2b, 0x2e,
                    0x66, 0xe9, 0x4b, 0xd4, 0xef, 0x8a, 0x2c, 0x3b,
                    0x88, 0x4c, 0xfa, 0x59, 0xca, 0x34, 0x2b, 0x2e,
                    0x01, 0x43, 0xdb, 0x63, 0xee, 0x66, 0xb0, 0xcd,
                    0xff, 0x9f, 0x69, 0x91, 0x76, 0x80, 0x15, 0x1e ]
            },
            EcbTest {
                key: repeat(0).take(16).collect(),
                plain: repeat(0).take(33).collect(),
                cipher: vec![
                    0x66, 0xe9, 0x4b, 0xd4, 0xef, 0x8a, 0x2c, 0x3b,
                    0x88, 0x4c, 0xfa, 0x59, 0xca, 0x34, 0x2b, 0x2e,
                    0x66, 0xe9, 0x4b, 0xd4, 0xef, 0x8a, 0x2c, 0x3b,
                    0x88, 0x4c, 0xfa, 0x59, 0xca, 0x34, 0x2b, 0x2e,
                    0x7a, 0xdc, 0x99, 0xb2, 0x9e, 0x82, 0xb1, 0xb2,
                    0xb0, 0xa6, 0x5a, 0x38, 0xbc, 0x57, 0x8a, 0x01 ]
            }
        ]
    }

    fn aes_cbc_no_padding_tests() -> Vec<CbcTest> {
        vec![
            CbcTest {
                key: repeat(1).take(16).collect(),
                iv: repeat(3).take(16).collect(),
                plain: repeat(2).take(32).collect(),
                cipher: vec![
                    0x5e, 0x77, 0xe5, 0x9f, 0x8f, 0x85, 0x94, 0x34,
                    0x89, 0xa2, 0x41, 0x49, 0xc7, 0x5f, 0x4e, 0xc9,
                    0xe0, 0x9a, 0x77, 0x36, 0xfb, 0xc8, 0xb2, 0xdc,
                    0xb3, 0xfb, 0x9f, 0xc0, 0x31, 0x4c, 0xb0, 0xb1 ]
            }
        ]
    }

    fn aes_cbc_pkcs_padding_tests() -> Vec<CbcTest> {
        vec![
            CbcTest {
                key: repeat(1).take(16).collect(),
                iv: repeat(3).take(16).collect(),
                plain: repeat(2).take(32).collect(),
                cipher: vec![
                    0x5e, 0x77, 0xe5, 0x9f, 0x8f, 0x85, 0x94, 0x34,
                    0x89, 0xa2, 0x41, 0x49, 0xc7, 0x5f, 0x4e, 0xc9,
                    0xe0, 0x9a, 0x77, 0x36, 0xfb, 0xc8, 0xb2, 0xdc,
                    0xb3, 0xfb, 0x9f, 0xc0, 0x31, 0x4c, 0xb0, 0xb1,
                    0xa4, 0xc2, 0xe4, 0x62, 0xef, 0x7a, 0xe3, 0x7e,
                    0xef, 0x88, 0xf3, 0x27, 0xbd, 0x9c, 0xc8, 0x4d ]
            },
            CbcTest {
                key: repeat(1).take(16).collect(),
                iv: repeat(3).take(16).collect(),
                plain: repeat(2).take(33).collect(),
                cipher: vec![
                    0x5e, 0x77, 0xe5, 0x9f, 0x8f, 0x85, 0x94, 0x34,
                    0x89, 0xa2, 0x41, 0x49, 0xc7, 0x5f, 0x4e, 0xc9,
                    0xe0, 0x9a, 0x77, 0x36, 0xfb, 0xc8, 0xb2, 0xdc,
                    0xb3, 0xfb, 0x9f, 0xc0, 0x31, 0x4c, 0xb0, 0xb1,
                    0x6c, 0x47, 0xcd, 0xec, 0xae, 0xbb, 0x1a, 0x65,
                    0x04, 0xd2, 0x32, 0x23, 0xa6, 0x8d, 0x4a, 0x65 ]
            }
        ]
    }

    fn aes_ctr_tests() -> Vec<CtrTest> {
        vec![
            CtrTest {
                key: repeat(1).take(16).collect(),
                ctr: repeat(3).take(16).collect(),
                plain: repeat(2).take(33).collect(),
                cipher: vec![
                    0x64, 0x3e, 0x05, 0x19, 0x79, 0x78, 0xd7, 0x45,
                    0xa9, 0x10, 0x5f, 0xd8, 0x4c, 0xd7, 0xe6, 0xb1,
                    0x5f, 0x66, 0xc6, 0x17, 0x4b, 0x25, 0xea, 0x24,
                    0xe6, 0xf9, 0x19, 0x09, 0xb7, 0xdd, 0x84, 0xfb,
                    0x86 ]
            }
        ]
    }

    // Test the mode by encrypting all of the data at once
    fn run_full_test<T: CipherTest, E: Encryptor, D: Decryptor>(
            test: &T,
            enc: &mut E,
            dec: &mut D) {
        let mut cipher_out: Vec<u8> = repeat(0).take(test.get_cipher().len()).collect();
        {
            let mut buff_in = RefReadBuffer::new(test.get_plain());
            let mut buff_out = RefWriteBuffer::new(cipher_out.as_mut_slice());
            match enc.encrypt(&mut buff_in, &mut buff_out, true) {
                Ok(BufferUnderflow) => {}
                Ok(BufferOverflow) => panic!("Encryption not completed"),
                Err(_) => panic!("Error"),
            }
        }
        assert!(test.get_cipher() == &cipher_out[..]);

        let mut plain_out: Vec<u8> = repeat(0).take(test.get_plain().len()).collect();
        {
            let mut buff_in = RefReadBuffer::new(test.get_cipher());
            let mut buff_out = RefWriteBuffer::new(plain_out.as_mut_slice());
            match dec.decrypt(&mut buff_in, &mut buff_out, true) {
                Ok(BufferUnderflow) => {}
                Ok(BufferOverflow) => panic!("Decryption not completed"),
                Err(_) => panic!("Error"),
            }
        }
        assert!(test.get_plain() == &plain_out[..]);
    }

    /// Run and encryption or decryption operation, passing in variable sized input and output
    /// buffers.
    ///
    /// # Arguments
    /// * input - The complete input vector
    /// * output - The complete output vector
    /// * op - A closure that runs either an encryption or decryption operation
    /// * next_in_len - A closure that returns the length to use for the next input buffer; If the
    ///                 returned value is not in a valid range, it will be fixed up by this
    ///                 function.
    /// * next_out_len - A closure that returns the length to use for the next output buffer; If the
    ///                  returned value is not in a valid range, it will be fixed up by this
    ///                  function.
    /// * immediate_eof - Whether eof should be set immediately upon running out of input or if eof
    ///                   should be passed only after all input has been consumed.
    fn run_inc<OpFunc, NextInFunc, NextOutFunc>(
            input: &[u8],
            output: &mut [u8],
            mut op: OpFunc,
            mut next_in_len: NextInFunc,
            mut next_out_len: NextOutFunc,
            immediate_eof: bool)
            where
                OpFunc: FnMut(&mut RefReadBuffer, &mut RefWriteBuffer, bool) ->
                    Result<BufferResult, SymmetricCipherError>,
                NextInFunc: FnMut() -> usize,
                NextOutFunc: FnMut() -> usize {
        use std::cell::Cell;

        let in_len = input.len();
        let out_len = output.len();

        let mut state: Result<BufferResult, SymmetricCipherError> = Ok(BufferUnderflow);
        let mut in_pos: usize = 0;
        let mut out_pos: usize = 0;
        let eof = Cell::new(false);

        let mut in_end = |in_pos: usize, primary: bool| {
            if eof.get() {
                return in_len;
            }
            let x = next_in_len();
            if x >= in_len && immediate_eof {
                eof.set(true);
            }
            cmp::min(in_len, in_pos + cmp::max(x, if primary { 1 } else { 0 }))
        };

        let mut out_end = |out_pos: usize| {
            let x = next_out_len();
            cmp::min(out_len, out_pos + cmp::max(x, 1))
        };

        loop {
            match state {
                Ok(BufferUnderflow) => {
                    if in_pos == input.len() {
                        break;
                    }
                    let mut tmp_in = RefReadBuffer::new(&input[in_pos..in_end(in_pos, true)]);
                    let out_end = out_end(out_pos);
                    let mut tmp_out = RefWriteBuffer::new(&mut output[out_pos..out_end]);
                    state = op(&mut tmp_in, &mut tmp_out, eof.get());
                    match state {
                        Ok(BufferUnderflow) => assert!(tmp_in.is_empty()),
                        _ => {}
                    }
                    in_pos += tmp_in.position();
                    out_pos += tmp_out.position();
                }
                Ok(BufferOverflow) => {
                    let mut tmp_in = RefReadBuffer::new(&input[in_pos..in_end(in_pos, false)]);
                    let out_end = out_end(out_pos);
                    let mut tmp_out = RefWriteBuffer::new(&mut output[out_pos..out_end]);
                    state = op(&mut tmp_in, &mut tmp_out, eof.get());
                    match state {
                        Ok(BufferOverflow) => assert!(tmp_out.is_full()),
                        _ => {}
                    }
                    in_pos += tmp_in.position();
                    out_pos += tmp_out.position();
                }
                Err(InvalidPadding) => panic!("Invalid Padding"),
                Err(InvalidLength) => panic!("Invalid Length")
            }
        }

        if !eof.get() {
            eof.set(true);
            let mut tmp_out = RefWriteBuffer::new(&mut output[out_pos..out_end(out_pos)]);
            state = op(&mut RefReadBuffer::new(&[]), &mut tmp_out, eof.get());
            out_pos += tmp_out.position();
        }

        loop {
            match state {
                Ok(BufferUnderflow) => {
                    break;
                }
                Ok(BufferOverflow) => {
                    let out_end = out_end(out_pos);
                    let mut tmp_out = RefWriteBuffer::new(&mut output[out_pos..out_end]);
                    state = op(&mut RefReadBuffer::new(&[]), &mut tmp_out, eof.get());
                    assert!(tmp_out.is_full());
                    out_pos += tmp_out.position();
                }
                Err(InvalidPadding) => panic!("Invalid Padding"),
                Err(InvalidLength) => panic!("Invalid Length")
            }
        }
    }

    fn run_inc1_test<T: CipherTest, E: Encryptor, D: Decryptor>(
            test: &T,
            enc: &mut E,
            dec: &mut D) {
        let mut cipher_out: Vec<u8> = repeat(0).take(test.get_cipher().len()).collect();
        run_inc(
            test.get_plain(),
            cipher_out.as_mut_slice(),
            |in_buff: &mut RefReadBuffer, out_buff: &mut RefWriteBuffer, eof: bool| {
                enc.encrypt(in_buff, out_buff, eof)
            },
            || { 0 },
            || { 1 },
            false);
        assert!(test.get_cipher() == &cipher_out[..]);

        let mut plain_out: Vec<u8> = repeat(0).take(test.get_plain().len()).collect();
        run_inc(
            test.get_cipher(),
            plain_out.as_mut_slice(),
            |in_buff: &mut RefReadBuffer, out_buff: &mut RefWriteBuffer, eof: bool| {
                dec.decrypt(in_buff, out_buff, eof)
            },
            || { 0 },
            || { 1 },
            false);
        assert!(test.get_plain() == &plain_out[..]);
    }

    fn run_rand_test<T, E, D, NewEncFunc, NewDecFunc>(
            test: &T,
            mut new_enc: NewEncFunc,
            mut new_dec: NewDecFunc)
            where
                T: CipherTest,
                E: Encryptor,
                D: Decryptor,
                NewEncFunc: FnMut() -> E,
                NewDecFunc: FnMut() -> D{
        use rand;
        use rand::Rng;

        let tmp : &[_] = &[1, 2, 3, 4];
        let mut rng1: rand::StdRng = rand::SeedableRng::from_seed(tmp);
        let mut rng2: rand::StdRng = rand::SeedableRng::from_seed(tmp);
        let mut rng3: rand::StdRng = rand::SeedableRng::from_seed(tmp);
        let max_size = cmp::max(test.get_plain().len(), test.get_cipher().len());

        let mut r1 = || {
            rng1.gen_range(0, max_size)
        };
        let mut r2 = || {
            rng2.gen_range(0, max_size)
        };

        for _ in range(0, 1000) {
            let mut enc = new_enc();
            let mut dec = new_dec();

            let mut cipher_out: Vec<u8> = repeat(0).take(test.get_cipher().len()).collect();
            run_inc(
                test.get_plain(),
                cipher_out.as_mut_slice(),
                |in_buff: &mut RefReadBuffer, out_buff: &mut RefWriteBuffer, eof: bool| {
                    enc.encrypt(in_buff, out_buff, eof)
                },
                || { r1() },
                || { r2() },
                rng3.gen());
            assert!(test.get_cipher() == &cipher_out[..]);

            let mut plain_out: Vec<u8> = repeat(0).take(test.get_plain().len()).collect();
            run_inc(
                test.get_cipher(),
                plain_out.as_mut_slice(),
                |in_buff: &mut RefReadBuffer, out_buff: &mut RefWriteBuffer, eof: bool| {
                    dec.decrypt(in_buff, out_buff, eof)
                },
                || { r1() },
                || { r2() },
                rng3.gen());
            assert!(test.get_plain() == &plain_out[..]);
        }
    }

    fn run_test<T, E, D, NewEncFunc, NewDecFunc>(
            test: &T,
            mut new_enc: NewEncFunc,
            mut new_dec: NewDecFunc)
            where
                T: CipherTest,
                E: Encryptor,
                D: Decryptor,
                NewEncFunc: FnMut() -> E,
                NewDecFunc: FnMut() -> D{
        run_full_test(test, &mut new_enc(), &mut new_dec());
        run_inc1_test(test, &mut new_enc(), &mut new_dec());
        run_rand_test(test, new_enc, new_dec);
    }

    #[test]
    fn aes_ecb_no_padding() {
        let tests = aes_ecb_no_padding_tests();
        for test in tests.iter() {
            run_test(
                test,
                || {
                    let aes_enc = aessafe::AesSafe128Encryptor::new(&test.key[..]);
                    EcbEncryptor::new(aes_enc, NoPadding)
                },
                || {
                    let aes_dec = aessafe::AesSafe128Decryptor::new(&test.key[..]);
                    EcbDecryptor::new(aes_dec, NoPadding)
                });
        }
    }

    #[test]
    fn aes_ecb_pkcs_padding() {
        let tests = aes_ecb_pkcs_padding_tests();
        for test in tests.iter() {
            run_test(
                test,
                || {
                    let aes_enc = aessafe::AesSafe128Encryptor::new(&test.key[..]);
                    EcbEncryptor::new(aes_enc, PkcsPadding)
                },
                || {
                    let aes_dec = aessafe::AesSafe128Decryptor::new(&test.key[..]);
                    EcbDecryptor::new(aes_dec, PkcsPadding)
                });
        }
    }

    #[test]
    fn aes_cbc_no_padding() {
        let tests = aes_cbc_no_padding_tests();
        for test in tests.iter() {
            run_test(
                test,
                || {
                    let aes_enc = aessafe::AesSafe128Encryptor::new(&test.key[..]);
                    CbcEncryptor::new(aes_enc, NoPadding, test.iv.clone())
                },
                || {
                    let aes_dec = aessafe::AesSafe128Decryptor::new(&test.key[..]);
                    CbcDecryptor::new(aes_dec, NoPadding, test.iv.clone())
                });
        }
    }

    #[test]
    fn aes_cbc_pkcs_padding() {
        let tests = aes_cbc_pkcs_padding_tests();
        for test in tests.iter() {
            run_test(
                test,
                || {
                    let aes_enc = aessafe::AesSafe128Encryptor::new(&test.key[..]);
                    CbcEncryptor::new(aes_enc, PkcsPadding, test.iv.clone())
                },
                || {
                    let aes_dec = aessafe::AesSafe128Decryptor::new(&test.key[..]);
                    CbcDecryptor::new(aes_dec, PkcsPadding, test.iv.clone())
                });
        }
    }

    #[test]
    fn aes_ctr() {
        let tests = aes_ctr_tests();
        for test in tests.iter() {
            run_test(
                test,
                || {
                    let aes_enc = aessafe::AesSafe128Encryptor::new(&test.key[..]);
                    CtrMode::new(aes_enc, test.ctr.clone())
                },
                || {
                    let aes_enc = aessafe::AesSafe128Encryptor::new(&test.key[..]);
                    CtrMode::new(aes_enc, test.ctr.clone())
                });
        }
    }

    #[test]
    fn aes_ctr_x8() {
        let tests = aes_ctr_tests();
        for test in tests.iter() {
            run_test(
                test,
                || {
                    let aes_enc = aessafe::AesSafe128EncryptorX8::new(&test.key[..]);
                    CtrModeX8::new(aes_enc, &test.ctr[..])
                },
                || {
                    let aes_enc = aessafe::AesSafe128EncryptorX8::new(&test.key[..]);
                    CtrModeX8::new(aes_enc, &test.ctr[..])
                });
        }
    }

    #[bench]
    pub fn aes_ecb_no_padding_bench(bh: &mut Bencher) {
        let key = [1u8; 16];
        let plain = [3u8; 512];
        let mut cipher = [3u8; 528];

        let aes_enc = aessafe::AesSafe128Encryptor::new(&key);
        let mut enc = EcbEncryptor::new(aes_enc, NoPadding);

        bh.iter( || {
            enc.reset();

            let mut buff_in = RefReadBuffer::new(&plain);
            let mut buff_out = RefWriteBuffer::new(&mut cipher);

            match enc.encrypt(&mut buff_in, &mut buff_out, true) {
                Ok(BufferUnderflow) => {}
                Ok(BufferOverflow) => panic!("Encryption not completed"),
                Err(_) => panic!("Error"),
            }
        });

        bh.bytes = (plain.len()) as u64;
    }

    #[bench]
    pub fn aes_cbc_pkcs_padding_bench(bh: &mut Bencher) {
        let key = [1u8; 16];
        let iv = [2u8; 16];
        let plain = [3u8; 512];
        let mut cipher = [3u8; 528];

        let aes_enc = aessafe::AesSafe128Encryptor::new(&key);
        let mut enc = CbcEncryptor::new(aes_enc, PkcsPadding, iv.to_vec());

        bh.iter( || {
            enc.reset(&iv);

            let mut buff_in = RefReadBuffer::new(&plain);
            let mut buff_out = RefWriteBuffer::new(&mut cipher);

            match enc.encrypt(&mut buff_in, &mut buff_out, true) {
                Ok(BufferUnderflow) => {}
                Ok(BufferOverflow) => panic!("Encryption not completed"),
                Err(_) => panic!("Error"),
            }
        });

        bh.bytes = (plain.len()) as u64;
    }

    #[bench]
    pub fn aes_ctr_bench(bh: &mut Bencher) {
        let key = [1u8; 16];
        let ctr = [2u8; 16];
        let plain = [3u8; 512];
        let mut cipher = [3u8; 528];

        let aes_enc = aessafe::AesSafe128Encryptor::new(&key);
        let mut enc = CtrMode::new(aes_enc, ctr.to_vec());

        bh.iter( || {
            enc.reset(&ctr);

            let mut buff_in = RefReadBuffer::new(&plain);
            let mut buff_out = RefWriteBuffer::new(&mut cipher);

            match enc.encrypt(&mut buff_in, &mut buff_out, true) {
                Ok(BufferUnderflow) => {}
                Ok(BufferOverflow) => panic!("Encryption not completed"),
                Err(_) => panic!("Error"),
            }
        });

        bh.bytes = (plain.len()) as u64;
    }

    #[bench]
    pub fn aes_ctr_x8_bench(bh: &mut Bencher) {
        let key = [1u8; 16];
        let ctr = [2u8; 16];
        let plain = [3u8; 512];
        let mut cipher = [3u8; 528];

        let aes_enc = aessafe::AesSafe128EncryptorX8::new(&key);
        let mut enc = CtrModeX8::new(aes_enc, &ctr);

        bh.iter( || {
            enc.reset(&ctr);

            let mut buff_in = RefReadBuffer::new(&plain);
            let mut buff_out = RefWriteBuffer::new(&mut cipher);

            match enc.encrypt(&mut buff_in, &mut buff_out, true) {
                Ok(BufferUnderflow) => {}
                Ok(BufferOverflow) => panic!("Encryption not completed"),
                Err(_) => panic!("Error"),
            }
        });

        bh.bytes = (plain.len()) as u64;
    }
}