1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

/*!

The `aessafe` module implements the AES algorithm completely in software without using any table
lookups or other timing dependant mechanisms. This module actually contains two seperate
implementations - an implementation that works on a single block at a time and a second
implementation that processes 8 blocks in parallel. Some block encryption modes really only work if
you are processing a single blocks (CFB, OFB, and CBC encryption for example) while other modes
are trivially parallelizable (CTR and CBC decryption). Processing more blocks at once allows for
greater efficiency, especially when using wide registers, such as the XMM registers available in
x86 processors.

## AES Algorithm

There are lots of places to go to on the internet for an involved description of how AES works. For
the purposes of this description, it sufficies to say that AES is just a block cipher that takes
a key of 16, 24, or 32 bytes and uses that to either encrypt or decrypt a block of 16 bytes. An
encryption or decryption operation consists of a number of rounds which involve some combination of
the following 4 basic operations:

* ShiftRows
* MixColumns
* SubBytes
* AddRoundKey

## Timing problems

Most software implementations of AES use a large set of lookup tables - generally at least the
SubBytes step is implemented via lookup tables; faster implementations generally implement the
MixColumns step this way as well. This is largely a design flaw in the AES implementation as it was
not realized during the NIST standardization process that table lookups can lead to security
problems [1]. The issue is that not all table lookups occur in constant time - an address that was
recently used is looked up much faster than one that hasn't been used in a while. A careful
adversary can measure the amount of time that each AES operation takes and use that information to
help determine the secret key or plain text information. More specifically, its not table lookups
that lead to these types of timing attacks - the issue is table lookups that use secret information
as part of the address to lookup. A table lookup that is performed the exact same way every time
regardless of the key or plaintext doesn't leak any information. This implementation uses no data
dependant table lookups.

## Bit Slicing

Bit Slicing is a technique that is basically a software emulation of hardware implementation
techniques. One of the earliest implementations of this technique was for a DES implementation [4].
In hardware, table lookups do not present the same timing problems as they do in software, however
they present other problems - namely that a 256 byte S-box table takes up a huge amount of space on
a chip. Hardware implementations, thus, tend to avoid table lookups and instead calculate the
contents of the S-Boxes as part of every operation. So, the key to an efficient Bit Sliced software
implementation is to re-arrange all of the bits of data to process into a form that can easily be
applied in much the same way that it would be in hardeware. It is fortunate, that AES was designed
such that these types of hardware implementations could be very efficient - the contents of the
S-boxes are defined by a mathematical formula.

A hardware implementation works on single bits at a time. Unlike adding variables in software,
however, that occur generally one at a time, hardware implementations are extremely parallel and
operate on many, many bits at once. Bit Slicing emulates that by moving all "equivalent" bits into
common registers and then operating on large groups of bits all at once. Calculating the S-box value
for a single bit is extremely expensive, but its much cheaper when you can amortize that cost over
128 bits (as in an XMM register). This implementation follows the same strategy as in [5] and that
is an excellent source for more specific details. However, a short description follows.

The input data is simply a collection of bytes. Each byte is comprised of 8 bits, a low order bit
(bit 0) through a high order bit (bit 7). Bit slicing the input data simply takes all of the low
order bits (bit 0) from the input data, and moves them into a single register (eg: XMM0). Next, all
of them 2nd lowest bits are moved into their own register (eg: XMM1), and so on. After completion,
we're left with 8 variables, each of which contains an equivalent set of bits. The exact order of
those bits is irrevent for the implementation of the SubBytes step, however, it is very important
for the MixColumns step. Again, see [5] for details. Due to the design of AES, its them possible to
execute the entire AES operation using just bitwise exclusive ors and rotates once we have Bit
Sliced the input data. After the completion of the AES operation, we then un-Bit Slice the data
to give us our output. Clearly, the more bits that we can process at once, the faster this will go -
thus, the version that processes 8 blocks at once is roughly 8 times faster than processing just a
single block at a time.

The ShiftRows step is fairly straight-forward to implement on the Bit Sliced state. The MixColumns
and especially the SubBytes steps are more complicated. This implementation draws heavily on the
formulas from [5], [6], and [7] to implement these steps.

## Implementation

Both implementations work basically the same way and share pretty much all of their code. The key
is first processed to create all of the round keys where each round key is just a 16 byte chunk of
data that is combined into the AES state by the AddRoundKey step as part of each encryption or
decryption round. Processing the round key can be expensive, so this is done before encryption or
decryption. Before encrypting or decrypting data, the data to be processed by be Bit Sliced into 8
seperate variables where each variable holds equivalent bytes from the state. This Bit Sliced state
is stored as a Bs8State<T>, where T is the type that stores each set of bits. The first
implementation stores these bits in a u32 which permits up to 8 * 32 = 1024 bits of data to be
processed at once. This implementation only processes a single block at a time, so, in reality, only
512 bits are processed at once and the remaining 512 bits of the variables are unused. The 2nd
implementation uses u32x4s - vectors of 4 u32s. Thus, we can process 8 * 128 = 4096 bits at once,
which corresponds exactly to 8 blocks.

The Bs8State struct implements the AesOps trait, which contains methods for each of the 4 main steps
of the AES algorithm. The types, T, each implement the AesBitValueOps trait, which containts methods
necessary for processing a collection or bit values and the AesOps trait relies heavily on this
trait to perform its operations.

The Bs4State and Bs2State struct implement operations of various subfields of the full GF(2^8)
finite field which allows for efficient computation of the AES S-Boxes. See [7] for details.

## References

[1] - "Cache-Collision Timing Attacks Against AES". Joseph Bonneau and Ilya Mironov.
      http://www.jbonneau.com/doc/BM06-CHES-aes_cache_timing.pdf
[2] - "Software mitigations to hedge AES against cache-based software side channel vulnerabilities".
      Ernie Brickell, et al. http://eprint.iacr.org/2006/052.pdf.
[3] - "Cache Attacks and Countermeasures: the Case of AES (Extended Version)".
      Dag Arne Osvik, et al. tau.ac.il/~tromer/papers/cache.pdf‎.
[4] - "A Fast New DES Implementation in Software". Eli Biham.
      http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.5429&rep=rep1&type=pdf.
[5] - "Faster and Timing-Attack Resistant AES-GCM". Emilia K ̈asper and Peter Schwabe.
      http://www.chesworkshop.org/ches2009/presentations/01_Session_1/CHES2009_ekasper.pdf.
[6] - "FAST AES DECRYPTION". Vinit Azad. http://webcache.googleusercontent.com/
      search?q=cache:ld_f8pSgURcJ:csusdspace.calstate.edu/bitstream/handle/10211.9/1224/
      Vinit_Azad_MS_Report.doc%3Fsequence%3D2+&cd=4&hl=en&ct=clnk&gl=us&client=ubuntu.
[7] - "A Very Compact Rijndael S-box". D. Canright.
      http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA434781.
*/

use std::ops::{BitAnd, BitXor, Not};
use std::num::Int;
use std::default::Default;
use std::iter::range_step;

use cryptoutil::{read_u32v_le, write_u32_le};
use symmetriccipher::{BlockEncryptor, BlockEncryptorX8, BlockDecryptor, BlockDecryptorX8};

// Using std::unstable::simd::u32x4 results in issues creating static arrays of u32x4 values.
// Defining the type here avoids that problem. Additionally, we need to implement various trait from
// libstd which wouldn't be possible if we used that type directly.
#[simd]
#[derive(Copy, Eq, PartialEq)]
#[allow(non_camel_case_types)]
pub struct u32x4(u32, u32, u32, u32);

const U32X4_0: u32x4 = u32x4(0, 0, 0, 0);
const U32X4_1: u32x4 = u32x4(-1, -1, -1, -1);

macro_rules! define_aes_struct(
    (
        $name:ident,
        $rounds:expr
    ) => (
        #[derive(Copy)]
        pub struct $name {
            sk: [Bs8State<u16>; ($rounds + 1)]
        }
    )
);

macro_rules! define_aes_impl(
    (
        $name:ident,
        $mode:ident,
        $rounds:expr,
        $key_size:expr
    ) => (
        impl $name {
            pub fn new(key: &[u8]) -> $name {
                let mut a =  $name {
                    sk: [Bs8State(0, 0, 0, 0, 0, 0, 0, 0); ($rounds + 1)]
                };
                let mut tmp = [[0u32; 4]; ($rounds + 1)];
                create_round_keys(key, KeyType::$mode, &mut tmp);
                for i in range(0, $rounds + 1) {
                    a.sk[i] = bit_slice_4x4_with_u16(tmp[i][0], tmp[i][1], tmp[i][2], tmp[i][3]);
                }
                a
            }
        }
    )
);

macro_rules! define_aes_enc(
    (
        $name:ident,
        $rounds:expr
    ) => (
        impl BlockEncryptor for $name {
            fn block_size(&self) -> usize { 16 }
            fn encrypt_block(&self, input: &[u8], output: &mut [u8]) {
                let mut bs = bit_slice_1x16_with_u16(input);
                bs = encrypt_core(&bs, &self.sk);
                un_bit_slice_1x16_with_u16(&bs, output);
            }
        }
    )
);

macro_rules! define_aes_dec(
    (
        $name:ident,
        $rounds:expr
    ) => (
        impl BlockDecryptor for $name {
            fn block_size(&self) -> usize { 16 }
            fn decrypt_block(&self, input: &[u8], output: &mut [u8]) {
                let mut bs = bit_slice_1x16_with_u16(input);
                bs = decrypt_core(&bs, &self.sk);
                un_bit_slice_1x16_with_u16(&bs, output);
            }
        }
    )
);

define_aes_struct!(AesSafe128Encryptor, 10);
define_aes_struct!(AesSafe128Decryptor, 10);
define_aes_impl!(AesSafe128Encryptor, Encryption, 10, 16);
define_aes_impl!(AesSafe128Decryptor, Decryption, 10, 16);
define_aes_enc!(AesSafe128Encryptor, 10);
define_aes_dec!(AesSafe128Decryptor, 10);

define_aes_struct!(AesSafe192Encryptor, 12);
define_aes_struct!(AesSafe192Decryptor, 12);
define_aes_impl!(AesSafe192Encryptor, Encryption, 12, 24);
define_aes_impl!(AesSafe192Decryptor, Decryption, 12, 24);
define_aes_enc!(AesSafe192Encryptor, 12);
define_aes_dec!(AesSafe192Decryptor, 12);

define_aes_struct!(AesSafe256Encryptor, 14);
define_aes_struct!(AesSafe256Decryptor, 14);
define_aes_impl!(AesSafe256Encryptor, Encryption, 14, 32);
define_aes_impl!(AesSafe256Decryptor, Decryption, 14, 32);
define_aes_enc!(AesSafe256Encryptor, 14);
define_aes_dec!(AesSafe256Decryptor, 14);

macro_rules! define_aes_struct_x8(
    (
        $name:ident,
        $rounds:expr
    ) => (
        #[derive(Copy)]
        pub struct $name {
            sk: [Bs8State<u32x4>; ($rounds + 1)]
        }
    )
);

macro_rules! define_aes_impl_x8(
    (
        $name:ident,
        $mode:ident,
        $rounds:expr,
        $key_size:expr
    ) => (
        impl $name {
            pub fn new(key: &[u8]) -> $name {
                let mut a =  $name {
                    sk: [
                        Bs8State(
                            U32X4_0,
                            U32X4_0,
                            U32X4_0,
                            U32X4_0,
                            U32X4_0,
                            U32X4_0,
                            U32X4_0,
                            U32X4_0);
                        ($rounds + 1)]
                };
                let mut tmp = [[0u32; 4]; ($rounds + 1)];
                create_round_keys(key, KeyType::$mode, &mut tmp);
                for i in range(0, $rounds + 1) {
                    a.sk[i] = bit_slice_fill_4x4_with_u32x4(
                        tmp[i][0],
                        tmp[i][1],
                        tmp[i][2],
                        tmp[i][3]);
                }
                a
            }
        }
    )
);

macro_rules! define_aes_enc_x8(
    (
        $name:ident,
        $rounds:expr
    ) => (
        impl BlockEncryptorX8 for $name {
            fn block_size(&self) -> usize { 16 }
            fn encrypt_block_x8(&self, input: &[u8], output: &mut [u8]) {
                let bs = bit_slice_1x128_with_u32x4(input);
                let bs2 = encrypt_core(&bs, &self.sk);
                un_bit_slice_1x128_with_u32x4(bs2, output);
            }
        }
    )
);

macro_rules! define_aes_dec_x8(
    (
        $name:ident,
        $rounds:expr
    ) => (
        impl BlockDecryptorX8 for $name {
            fn block_size(&self) -> usize { 16 }
            fn decrypt_block_x8(&self, input: &[u8], output: &mut [u8]) {
                let bs = bit_slice_1x128_with_u32x4(input);
                let bs2 = decrypt_core(&bs, &self.sk);
                un_bit_slice_1x128_with_u32x4(bs2, output);
            }
        }
    )
);

define_aes_struct_x8!(AesSafe128EncryptorX8, 10);
define_aes_struct_x8!(AesSafe128DecryptorX8, 10);
define_aes_impl_x8!(AesSafe128EncryptorX8, Encryption, 10, 16);
define_aes_impl_x8!(AesSafe128DecryptorX8, Decryption, 10, 16);
define_aes_enc_x8!(AesSafe128EncryptorX8, 10);
define_aes_dec_x8!(AesSafe128DecryptorX8, 10);

define_aes_struct_x8!(AesSafe192EncryptorX8, 12);
define_aes_struct_x8!(AesSafe192DecryptorX8, 12);
define_aes_impl_x8!(AesSafe192EncryptorX8, Encryption, 12, 24);
define_aes_impl_x8!(AesSafe192DecryptorX8, Decryption, 12, 24);
define_aes_enc_x8!(AesSafe192EncryptorX8, 12);
define_aes_dec_x8!(AesSafe192DecryptorX8, 12);

define_aes_struct_x8!(AesSafe256EncryptorX8, 14);
define_aes_struct_x8!(AesSafe256DecryptorX8, 14);
define_aes_impl_x8!(AesSafe256EncryptorX8, Encryption, 14, 32);
define_aes_impl_x8!(AesSafe256DecryptorX8, Decryption, 14, 32);
define_aes_enc_x8!(AesSafe256EncryptorX8, 14);
define_aes_dec_x8!(AesSafe256DecryptorX8, 14);

fn ffmulx(x: u32) -> u32 {
    let m1: u32 = 0x80808080;
    let m2: u32 = 0x7f7f7f7f;
    let m3: u32 = 0x0000001b;
    ((x & m2) << 1) ^ (((x & m1) >> 7) * m3)
}

fn inv_mcol(x: u32) -> u32 {
    let f2 = ffmulx(x);
    let f4 = ffmulx(f2);
    let f8 = ffmulx(f4);
    let f9 = x ^ f8;

    f2 ^ f4 ^ f8 ^ (f2 ^ f9).rotate_right(8) ^ (f4 ^ f9).rotate_right(16) ^ f9.rotate_right(24)
}

fn sub_word(x: u32) -> u32 {
    let bs = bit_slice_4x1_with_u16(x).sub_bytes();
    un_bit_slice_4x1_with_u16(&bs)
}

enum KeyType {
    Encryption,
    Decryption
}

// This array is not accessed in any key-dependant way, so there are no timing problems inherent in
// using it.
static RCON: [u32; 10] = [0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];

// The round keys are created without bit-slicing the key data. The individual implementations bit
// slice the round keys returned from this function. This function, and the few functions above, are
// derived from the BouncyCastle AES implementation.
fn create_round_keys(key: &[u8], key_type: KeyType, round_keys: &mut [[u32; 4]]) {
    let (key_words, rounds) = match key.len() {
        16 => (4, 10),
        24 => (6, 12),
        32 => (8, 14),
        _ => panic!("Invalid AES key size.")
    };

    // The key is copied directly into the first few round keys
    let mut j = 0;
    for i in range_step(0, key.len(), 4) {
        round_keys[j / 4][j % 4] =
            (key[i] as u32) |
            ((key[i+1] as u32) << 8) |
            ((key[i+2] as u32) << 16) |
            ((key[i+3] as u32) << 24);
        j += 1;
    };

    // Calculate the rest of the round keys
    for i in range(key_words, (rounds + 1) * 4) {
        let mut tmp = round_keys[(i - 1) / 4][(i - 1) % 4];
        if (i % key_words) == 0 {
            tmp = sub_word(tmp.rotate_right(8)) ^ RCON[(i / key_words) - 1];
        } else if (key_words == 8) && ((i % key_words) == 4) {
            // This is only necessary for AES-256 keys
            tmp = sub_word(tmp);
        }
        round_keys[i / 4][i % 4] = round_keys[(i - key_words) / 4][(i - key_words) % 4] ^ tmp;
    }

    // Decryption round keys require extra processing
    match key_type {
        KeyType::Decryption => {
            for j in range(1, rounds) {
                for i in range(0, 4) {
                    round_keys[j][i] = inv_mcol(round_keys[j][i]);
                }
            }
        },
        KeyType::Encryption => { }
    }
}

// This trait defines all of the operations needed for a type to be processed as part of an AES
// encryption or decryption operation.
trait AesOps {
    fn sub_bytes(self) -> Self;
    fn inv_sub_bytes(self) -> Self;
    fn shift_rows(self) -> Self;
    fn inv_shift_rows(self) -> Self;
    fn mix_columns(self) -> Self;
    fn inv_mix_columns(self) -> Self;
    fn add_round_key(self, rk: &Self) -> Self;
}

fn encrypt_core<S: AesOps + Copy>(state: &S, sk: &[S]) -> S {
    // Round 0 - add round key
    let mut tmp = state.add_round_key(&sk[0]);

    // Remaining rounds (except last round)
    for i in range(1, sk.len() - 1) {
        tmp = tmp.sub_bytes();
        tmp = tmp.shift_rows();
        tmp = tmp.mix_columns();
        tmp = tmp.add_round_key(&sk[i]);
    }

    // Last round
    tmp = tmp.sub_bytes();
    tmp = tmp.shift_rows();
    tmp = tmp.add_round_key(&sk[sk.len() - 1]);

    tmp
}

fn decrypt_core<S: AesOps + Copy>(state: &S, sk: &[S]) -> S {
    // Round 0 - add round key
    let mut tmp = state.add_round_key(&sk[sk.len() - 1]);

    // Remaining rounds (except last round)
    for i in range(1, sk.len() - 1) {
        tmp = tmp.inv_sub_bytes();
        tmp = tmp.inv_shift_rows();
        tmp = tmp.inv_mix_columns();
        tmp = tmp.add_round_key(&sk[sk.len() - 1 - i]);
    }

    // Last round
    tmp = tmp.inv_sub_bytes();
    tmp = tmp.inv_shift_rows();
    tmp = tmp.add_round_key(&sk[0]);

    tmp
}

#[derive(Copy)]
struct Bs8State<T>(T, T, T, T, T, T, T, T);

impl <T: Copy> Bs8State<T> {
    fn split(self) -> (Bs4State<T>, Bs4State<T>) {
        let Bs8State(x0, x1, x2, x3, x4, x5, x6, x7) = self;
        (Bs4State(x0, x1, x2, x3), Bs4State(x4, x5, x6, x7))
    }
}

impl <T: BitXor<Output = T> + Copy> Bs8State<T> {
    fn xor(self, rhs: Bs8State<T>) -> Bs8State<T> {
        let Bs8State(a0, a1, a2, a3, a4, a5, a6, a7) = self;
        let Bs8State(b0, b1, b2, b3, b4, b5, b6, b7) = rhs;
        Bs8State(a0 ^ b0, a1 ^ b1, a2 ^ b2, a3 ^ b3, a4 ^ b4, a5 ^ b5, a6 ^ b6, a7 ^ b7)
    }

    // We need to be able to convert a Bs8State to and from a polynomial basis and a normal
    // basis. That transformation could be done via pseudocode that roughly looks like the
    // following:
    //
    // for x in range(0, 8) {
    //     for y in range(0, 8) {
    //         result.x ^= input.y & MATRIX[7 - y][x]
    //     }
    // }
    //
    // Where the MATRIX is one of the following depending on the conversion being done.
    // (The affine transformation step is included in all of these matrices):
    //
    // A2X = [
    //     [ 0,  0,  0, -1, -1,  0,  0, -1],
    //     [-1, -1,  0,  0, -1, -1, -1, -1],
    //     [ 0, -1,  0,  0, -1, -1, -1, -1],
    //     [ 0,  0,  0, -1,  0,  0, -1,  0],
    //     [-1,  0,  0, -1,  0,  0,  0,  0],
    //     [-1,  0,  0,  0,  0,  0,  0, -1],
    //     [-1,  0,  0, -1,  0, -1,  0, -1],
    //     [-1, -1, -1, -1, -1, -1, -1, -1]
    // ];
    //
    // X2A = [
    //     [ 0,  0, -1,  0,  0, -1, -1,  0],
    //     [ 0,  0,  0, -1, -1, -1, -1,  0],
    //     [ 0, -1, -1, -1,  0, -1, -1,  0],
    //     [ 0,  0, -1, -1,  0,  0,  0, -1],
    //     [ 0,  0,  0, -1,  0, -1, -1,  0],
    //     [-1,  0,  0, -1,  0, -1,  0,  0],
    //     [ 0, -1, -1, -1, -1,  0, -1, -1],
    //     [ 0,  0,  0,  0,  0, -1, -1,  0],
    // ];
    //
    // X2S = [
    //     [ 0,  0,  0, -1, -1,  0, -1,  0],
    //     [-1,  0, -1, -1,  0, -1,  0,  0],
    //     [ 0, -1, -1, -1, -1,  0,  0, -1],
    //     [-1, -1,  0, -1,  0,  0,  0,  0],
    //     [ 0,  0, -1, -1, -1,  0, -1, -1],
    //     [ 0,  0, -1,  0,  0,  0,  0,  0],
    //     [-1, -1,  0,  0,  0,  0,  0,  0],
    //     [ 0,  0, -1,  0,  0, -1,  0,  0],
    // ];
    //
    // S2X = [
    //     [ 0,  0, -1, -1,  0,  0,  0, -1],
    //     [-1,  0,  0, -1, -1, -1, -1,  0],
    //     [-1,  0, -1,  0,  0,  0,  0,  0],
    //     [-1, -1,  0, -1,  0, -1, -1, -1],
    //     [ 0, -1,  0,  0, -1,  0,  0,  0],
    //     [ 0,  0, -1,  0,  0,  0,  0,  0],
    //     [-1,  0,  0,  0, -1,  0, -1,  0],
    //     [-1, -1,  0,  0, -1,  0, -1,  0],
    // ];
    //
    // Looking at the pseudocode implementation, we see that there is no point
    // in processing any of the elements in those matrices that have zero values
    // since a logical AND with 0 will produce 0 which will have no effect when it
    // is XORed into the result.
    //
    // LLVM doesn't appear to be able to fully unroll the loops in the pseudocode
    // above and to eliminate processing of the 0 elements. So, each transformation is
    // implemented independently directly in fully unrolled form with the 0 elements
    // removed.
    //
    // As an optimization, elements that are XORed together multiple times are
    // XORed just once and then used multiple times. I wrote a simple program that
    // greedily looked for terms to combine to create the implementations below.
    // It is likely that this could be optimized more.

    fn change_basis_a2x(&self) -> Bs8State<T> {
        let t06 = self.6 ^ self.0;
        let t056 = self.5 ^ t06;
        let t0156 = t056 ^ self.1;
        let t13 = self.1 ^ self.3;

        let x0 = self.2 ^ t06 ^ t13;
        let x1 = t056;
        let x2 = self.0;
        let x3 = self.0 ^ self.4 ^ self.7 ^ t13;
        let x4 = self.7 ^ t056;
        let x5 = t0156;
        let x6 = self.4 ^ t056;
        let x7 = self.2 ^ self.7 ^ t0156;

        Bs8State(x0, x1, x2, x3, x4, x5, x6, x7)
    }

    fn change_basis_x2s(&self) -> Bs8State<T> {
        let t46 = self.4 ^ self.6;
        let t35 = self.3 ^ self.5;
        let t06 = self.0 ^ self.6;
        let t357 = t35 ^ self.7;

        let x0 = self.1 ^ t46;
        let x1 = self.1 ^ self.4 ^ self.5;
        let x2 = self.2 ^ t35 ^ t06;
        let x3 = t46 ^ t357;
        let x4 = t357;
        let x5 = t06;
        let x6 = self.3 ^ self.7;
        let x7 = t35;

        Bs8State(x0, x1, x2, x3, x4, x5, x6, x7)
    }

    fn change_basis_x2a(&self) -> Bs8State<T> {
        let t15 = self.1 ^ self.5;
        let t36 = self.3 ^ self.6;
        let t1356 = t15 ^ t36;
        let t07 = self.0 ^ self.7;

        let x0 = self.2;
        let x1 = t15;
        let x2 = self.4 ^ self.7 ^ t15;
        let x3 = self.2 ^ self.4 ^ t1356;
        let x4 = self.1 ^ self.6;
        let x5 = self.2 ^ self.5 ^ t36 ^ t07;
        let x6 = t1356 ^ t07;
        let x7 = self.1 ^ self.4;

        Bs8State(x0, x1, x2, x3, x4, x5, x6, x7)
    }

    fn change_basis_s2x(&self) -> Bs8State<T> {
        let t46 = self.4 ^ self.6;
        let t01 = self.0 ^ self.1;
        let t0146 = t01 ^ t46;

        let x0 = self.5 ^ t0146;
        let x1 = self.0 ^ self.3 ^ self.4;
        let x2 = self.2 ^ self.5 ^ self.7;
        let x3 = self.7 ^ t46;
        let x4 = self.3 ^ self.6 ^ t01;
        let x5 = t46;
        let x6 = t0146;
        let x7 = self.4 ^ self.7;

        Bs8State(x0, x1, x2, x3, x4, x5, x6, x7)
    }
}

impl <T: Not<Output = T> + Copy> Bs8State<T> {
    // The special value "x63" is used as part of the sub_bytes and inv_sub_bytes
    // steps. It is conceptually a Bs8State value where the 0th, 1st, 5th, and 6th
    // elements are all 1s and the other elements are all 0s. The only thing that
    // we do with the "x63" value is to XOR a Bs8State with it. We optimize that XOR
    // below into just inverting 4 of the elements and leaving the other 4 elements
    // untouched.
    fn xor_x63(self) -> Bs8State<T> {
        Bs8State (
            !self.0,
            !self.1,
            self.2,
            self.3,
            self.4,
            !self.5,
            !self.6,
            self.7)
    }
}

#[derive(Copy)]
struct Bs4State<T>(T, T, T, T);

impl <T: Copy> Bs4State<T> {
    fn split(self) -> (Bs2State<T>, Bs2State<T>) {
        let Bs4State(x0, x1, x2, x3) = self;
        (Bs2State(x0, x1), Bs2State(x2, x3))
    }

    fn join(self, rhs: Bs4State<T>) -> Bs8State<T> {
        let Bs4State(a0, a1, a2, a3) = self;
        let Bs4State(b0, b1, b2, b3) = rhs;
        Bs8State(a0, a1, a2, a3, b0, b1, b2, b3)
    }
}

impl <T: BitXor<Output = T> + Copy> Bs4State<T> {
    fn xor(self, rhs: Bs4State<T>) -> Bs4State<T> {
        let Bs4State(a0, a1, a2, a3) = self;
        let Bs4State(b0, b1, b2, b3) = rhs;
        Bs4State(a0 ^ b0, a1 ^ b1, a2 ^ b2, a3 ^ b3)
    }
}

#[derive(Copy)]
struct Bs2State<T>(T, T);

impl <T> Bs2State<T> {
    fn split(self) -> (T, T) {
        let Bs2State(x0, x1) = self;
        (x0, x1)
    }

    fn join(self, rhs: Bs2State<T>) -> Bs4State<T> {
        let Bs2State(a0, a1) = self;
        let Bs2State(b0, b1) = rhs;
        Bs4State(a0, a1, b0, b1)
    }
}

impl <T: BitXor<Output = T> + Copy> Bs2State<T> {
    fn xor(self, rhs: Bs2State<T>) -> Bs2State<T> {
        let Bs2State(a0, a1) = self;
        let Bs2State(b0, b1) = rhs;
        Bs2State(a0 ^ b0, a1 ^ b1)
    }
}

// Bit Slice data in the form of 4 u32s in column-major order
fn bit_slice_4x4_with_u16(a: u32, b: u32, c: u32, d: u32) -> Bs8State<u16> {
    fn pb(x: u32, bit: u32, shift: u32) -> u16 {
        (((x >> bit) & 1) as u16) << shift
    }

    fn construct(a: u32, b: u32, c: u32, d: u32, bit: u32) -> u16 {
        pb(a, bit, 0)       | pb(b, bit, 1)       | pb(c, bit, 2)       | pb(d, bit, 3)       |
        pb(a, bit + 8, 4)   | pb(b, bit + 8, 5)   | pb(c, bit + 8, 6)   | pb(d, bit + 8, 7)   |
        pb(a, bit + 16, 8)  | pb(b, bit + 16, 9)  | pb(c, bit + 16, 10) | pb(d, bit + 16, 11) |
        pb(a, bit + 24, 12) | pb(b, bit + 24, 13) | pb(c, bit + 24, 14) | pb(d, bit + 24, 15)
    }

    let x0 = construct(a, b, c, d, 0);
    let x1 = construct(a, b, c, d, 1);
    let x2 = construct(a, b, c, d, 2);
    let x3 = construct(a, b, c, d, 3);
    let x4 = construct(a, b, c, d, 4);
    let x5 = construct(a, b, c, d, 5);
    let x6 = construct(a, b, c, d, 6);
    let x7 = construct(a, b, c, d, 7);

    Bs8State(x0, x1, x2, x3, x4, x5, x6, x7)
}

// Bit slice a single u32 value - this is used to calculate the SubBytes step when creating the
// round keys.
fn bit_slice_4x1_with_u16(a: u32) -> Bs8State<u16> {
    bit_slice_4x4_with_u16(a, 0, 0, 0)
}

// Bit slice a 16 byte array in column major order
fn bit_slice_1x16_with_u16(data: &[u8]) -> Bs8State<u16> {
    let mut n = [0u32; 4];
    read_u32v_le(&mut n, data);

    let a = n[0];
    let b = n[1];
    let c = n[2];
    let d = n[3];

    bit_slice_4x4_with_u16(a, b, c, d)
}

// Un Bit Slice into a set of 4 u32s
fn un_bit_slice_4x4_with_u16(bs: &Bs8State<u16>) -> (u32, u32, u32, u32) {
    fn pb(x: u16, bit: u32, shift: u32) -> u32 {
        (((x >> bit) & 1) as u32) << shift
    }

    fn deconstruct(bs: &Bs8State<u16>, bit: u32) -> u32 {
        let Bs8State(x0, x1, x2, x3, x4, x5, x6, x7) = *bs;

        pb(x0, bit, 0) | pb(x1, bit, 1) | pb(x2, bit, 2) | pb(x3, bit, 3) |
        pb(x4, bit, 4) | pb(x5, bit, 5) | pb(x6, bit, 6) | pb(x7, bit, 7) |

        pb(x0, bit + 4, 8)  | pb(x1, bit + 4, 9)  | pb(x2, bit + 4, 10) | pb(x3, bit + 4, 11) |
        pb(x4, bit + 4, 12) | pb(x5, bit + 4, 13) | pb(x6, bit + 4, 14) | pb(x7, bit + 4, 15) |

        pb(x0, bit + 8, 16) | pb(x1, bit + 8, 17) | pb(x2, bit + 8, 18) | pb(x3, bit + 8, 19) |
        pb(x4, bit + 8, 20) | pb(x5, bit + 8, 21) | pb(x6, bit + 8, 22) | pb(x7, bit + 8, 23) |

        pb(x0, bit + 12, 24) | pb(x1, bit + 12, 25) | pb(x2, bit + 12, 26) | pb(x3, bit + 12, 27) |
        pb(x4, bit + 12, 28) | pb(x5, bit + 12, 29) | pb(x6, bit + 12, 30) | pb(x7, bit + 12, 31)
    }

    let a = deconstruct(bs, 0);
    let b = deconstruct(bs, 1);
    let c = deconstruct(bs, 2);
    let d = deconstruct(bs, 3);

    (a, b, c, d)
}

// Un Bit Slice into a single u32. This is used when creating the round keys.
fn un_bit_slice_4x1_with_u16(bs: &Bs8State<u16>) -> u32 {
    let (a, _, _, _) = un_bit_slice_4x4_with_u16(bs);
    a
}

// Un Bit Slice into a 16 byte array
fn un_bit_slice_1x16_with_u16(bs: &Bs8State<u16>, output: &mut [u8]) {
    let (a, b, c, d) = un_bit_slice_4x4_with_u16(bs);

    write_u32_le(&mut output[0..4], a);
    write_u32_le(&mut output[4..8], b);
    write_u32_le(&mut output[8..12], c);
    write_u32_le(&mut output[12..16], d);
}

// Bit Slice a 128 byte array of eight 16 byte blocks. Each block is in column major order.
fn bit_slice_1x128_with_u32x4(data: &[u8]) -> Bs8State<u32x4> {
    let bit0 = u32x4(0x01010101, 0x01010101, 0x01010101, 0x01010101);
    let bit1 = u32x4(0x02020202, 0x02020202, 0x02020202, 0x02020202);
    let bit2 = u32x4(0x04040404, 0x04040404, 0x04040404, 0x04040404);
    let bit3 = u32x4(0x08080808, 0x08080808, 0x08080808, 0x08080808);
    let bit4 = u32x4(0x10101010, 0x10101010, 0x10101010, 0x10101010);
    let bit5 = u32x4(0x20202020, 0x20202020, 0x20202020, 0x20202020);
    let bit6 = u32x4(0x40404040, 0x40404040, 0x40404040, 0x40404040);
    let bit7 = u32x4(0x80808080, 0x80808080, 0x80808080, 0x80808080);

    fn read_row_major(data: &[u8]) -> u32x4 {
        u32x4(
            (data[0] as u32) |
            ((data[4] as u32) << 8) |
            ((data[8] as u32) << 16) |
            ((data[12] as u32) << 24),
            (data[1] as u32) |
            ((data[5] as u32) << 8) |
            ((data[9] as u32) << 16) |
            ((data[13] as u32) << 24),
            (data[2] as u32) |
            ((data[6] as u32) << 8) |
            ((data[10] as u32) << 16) |
            ((data[14] as u32) << 24),
            (data[3] as u32) |
            ((data[7] as u32) << 8) |
            ((data[11] as u32) << 16) |
            ((data[15] as u32) << 24))
    }

    let t0 = read_row_major(&data[0..16]);
    let t1 = read_row_major(&data[16..32]);
    let t2 = read_row_major(&data[32..48]);
    let t3 = read_row_major(&data[48..64]);
    let t4 = read_row_major(&data[64..80]);
    let t5 = read_row_major(&data[80..96]);
    let t6 = read_row_major(&data[96..112]);
    let t7 = read_row_major(&data[112..128]);

    let x0 = (t0 & bit0) | (t1.lsh(1) & bit1) | (t2.lsh(2) & bit2) | (t3.lsh(3) & bit3) |
        (t4.lsh(4) & bit4) | (t5.lsh(5) & bit5) | (t6.lsh(6) & bit6) | (t7.lsh(7) & bit7);
    let x1 = (t0.rsh(1) & bit0) | (t1 & bit1) | (t2.lsh(1) & bit2) | (t3.lsh(2) & bit3) |
        (t4.lsh(3) & bit4) | (t5.lsh(4) & bit5) | (t6.lsh(5) & bit6) | (t7.lsh(6) & bit7);
    let x2 = (t0.rsh(2) & bit0) | (t1.rsh(1) & bit1) | (t2 & bit2) | (t3.lsh(1) & bit3) |
        (t4.lsh(2) & bit4) | (t5.lsh(3) & bit5) | (t6.lsh(4) & bit6) | (t7.lsh(5) & bit7);
    let x3 = (t0.rsh(3) & bit0) | (t1.rsh(2) & bit1) | (t2.rsh(1) & bit2) | (t3 & bit3) |
        (t4.lsh(1) & bit4) | (t5.lsh(2) & bit5) | (t6.lsh(3) & bit6) | (t7.lsh(4) & bit7);
    let x4 = (t0.rsh(4) & bit0) | (t1.rsh(3) & bit1) | (t2.rsh(2) & bit2) | (t3.rsh(1) & bit3) |
        (t4 & bit4) | (t5.lsh(1) & bit5) | (t6.lsh(2) & bit6) | (t7.lsh(3) & bit7);
    let x5 = (t0.rsh(5) & bit0) | (t1.rsh(4) & bit1) | (t2.rsh(3) & bit2) | (t3.rsh(2) & bit3) |
        (t4.rsh(1) & bit4) | (t5 & bit5) | (t6.lsh(1) & bit6) | (t7.lsh(2) & bit7);
    let x6 = (t0.rsh(6) & bit0) | (t1.rsh(5) & bit1) | (t2.rsh(4) & bit2) | (t3.rsh(3) & bit3) |
        (t4.rsh(2) & bit4) | (t5.rsh(1) & bit5) | (t6 & bit6) | (t7.lsh(1) & bit7);
    let x7 = (t0.rsh(7) & bit0) | (t1.rsh(6) & bit1) | (t2.rsh(5) & bit2) | (t3.rsh(4) & bit3) |
        (t4.rsh(3) & bit4) | (t5.rsh(2) & bit5) | (t6.rsh(1) & bit6) | (t7 & bit7);

    Bs8State(x0, x1, x2, x3, x4, x5, x6, x7)
}

// Bit slice a set of 4 u32s by filling a full 128 byte data block with those repeated values. This
// is used as part of bit slicing the round keys.
fn bit_slice_fill_4x4_with_u32x4(a: u32, b: u32, c: u32, d: u32) -> Bs8State<u32x4> {
    let mut tmp = [0u8; 128];
    for i in range(0, 8) {
        write_u32_le(&mut tmp[i * 16..i * 16 + 4], a);
        write_u32_le(&mut tmp[i * 16 + 4..i * 16 + 8], b);
        write_u32_le(&mut tmp[i * 16 + 8..i * 16 + 12], c);
        write_u32_le(&mut tmp[i * 16 + 12..i * 16 + 16], d);
    }
    bit_slice_1x128_with_u32x4(&tmp)
}

// Un bit slice into a 128 byte buffer.
fn un_bit_slice_1x128_with_u32x4(bs: Bs8State<u32x4>, output: &mut [u8]) {
    let Bs8State(t0, t1, t2, t3, t4, t5, t6, t7) = bs;

    let bit0 = u32x4(0x01010101, 0x01010101, 0x01010101, 0x01010101);
    let bit1 = u32x4(0x02020202, 0x02020202, 0x02020202, 0x02020202);
    let bit2 = u32x4(0x04040404, 0x04040404, 0x04040404, 0x04040404);
    let bit3 = u32x4(0x08080808, 0x08080808, 0x08080808, 0x08080808);
    let bit4 = u32x4(0x10101010, 0x10101010, 0x10101010, 0x10101010);
    let bit5 = u32x4(0x20202020, 0x20202020, 0x20202020, 0x20202020);
    let bit6 = u32x4(0x40404040, 0x40404040, 0x40404040, 0x40404040);
    let bit7 = u32x4(0x80808080, 0x80808080, 0x80808080, 0x80808080);

    // decode the individual blocks, in row-major order
    // TODO: this is identical to the same block in bit_slice_1x128_with_u32x4
    let x0 = (t0 & bit0) | (t1.lsh(1) & bit1) | (t2.lsh(2) & bit2) | (t3.lsh(3) & bit3) |
        (t4.lsh(4) & bit4) | (t5.lsh(5) & bit5) | (t6.lsh(6) & bit6) | (t7.lsh(7) & bit7);
    let x1 = (t0.rsh(1) & bit0) | (t1 & bit1) | (t2.lsh(1) & bit2) | (t3.lsh(2) & bit3) |
        (t4.lsh(3) & bit4) | (t5.lsh(4) & bit5) | (t6.lsh(5) & bit6) | (t7.lsh(6) & bit7);
    let x2 = (t0.rsh(2) & bit0) | (t1.rsh(1) & bit1) | (t2 & bit2) | (t3.lsh(1) & bit3) |
        (t4.lsh(2) & bit4) | (t5.lsh(3) & bit5) | (t6.lsh(4) & bit6) | (t7.lsh(5) & bit7);
    let x3 = (t0.rsh(3) & bit0) | (t1.rsh(2) & bit1) | (t2.rsh(1) & bit2) | (t3 & bit3) |
        (t4.lsh(1) & bit4) | (t5.lsh(2) & bit5) | (t6.lsh(3) & bit6) | (t7.lsh(4) & bit7);
    let x4 = (t0.rsh(4) & bit0) | (t1.rsh(3) & bit1) | (t2.rsh(2) & bit2) | (t3.rsh(1) & bit3) |
        (t4 & bit4) | (t5.lsh(1) & bit5) | (t6.lsh(2) & bit6) | (t7.lsh(3) & bit7);
    let x5 = (t0.rsh(5) & bit0) | (t1.rsh(4) & bit1) | (t2.rsh(3) & bit2) | (t3.rsh(2) & bit3) |
        (t4.rsh(1) & bit4) | (t5 & bit5) | (t6.lsh(1) & bit6) | (t7.lsh(2) & bit7);
    let x6 = (t0.rsh(6) & bit0) | (t1.rsh(5) & bit1) | (t2.rsh(4) & bit2) | (t3.rsh(3) & bit3) |
        (t4.rsh(2) & bit4) | (t5.rsh(1) & bit5) | (t6 & bit6) | (t7.lsh(1) & bit7);
    let x7 = (t0.rsh(7) & bit0) | (t1.rsh(6) & bit1) | (t2.rsh(5) & bit2) | (t3.rsh(4) & bit3) |
        (t4.rsh(3) & bit4) | (t5.rsh(2) & bit5) | (t6.rsh(1) & bit6) | (t7 & bit7);

    fn write_row_major(block: u32x4, output: &mut [u8]) {
        let u32x4(a0, a1, a2, a3) = block;
        output[0] = a0 as u8;
        output[1] = a1 as u8;
        output[2] = a2 as u8;
        output[3] = a3 as u8;
        output[4] = (a0 >> 8) as u8;
        output[5] = (a1 >> 8) as u8;
        output[6] = (a2 >> 8) as u8;
        output[7] = (a3 >> 8) as u8;
        output[8] = (a0 >> 16) as u8;
        output[9] = (a1 >> 16) as u8;
        output[10] = (a2 >> 16) as u8;
        output[11] = (a3 >> 16) as u8;
        output[12] = (a0 >> 24) as u8;
        output[13] = (a1 >> 24) as u8;
        output[14] = (a2 >> 24) as u8;
        output[15] = (a3 >> 24) as u8;
    }

    write_row_major(x0, &mut output[0..16]);
    write_row_major(x1, &mut output[16..32]);
    write_row_major(x2, &mut output[32..48]);
    write_row_major(x3, &mut output[48..64]);
    write_row_major(x4, &mut output[64..80]);
    write_row_major(x5, &mut output[80..96]);
    write_row_major(x6, &mut output[96..112]);
    write_row_major(x7, &mut output[112..128])
}

// The Gf2Ops, Gf4Ops, and Gf8Ops traits specify the functions needed to calculate the AES S-Box
// values. This particuar implementation of those S-Box values is taken from [7], so that is where
// to look for details on how all that all works. This includes the transformations matrices defined
// below for the change_basis operation on the u32 and u32x4 types.

// Operations in GF(2^2) using normal basis (Omega^2,Omega)
trait Gf2Ops {
    // multiply
    fn mul(self, y: Self) -> Self;

    // scale by N = Omega^2
    fn scl_n(self) -> Self;

    // scale by N^2 = Omega
    fn scl_n2(self) -> Self;

    // square
    fn sq(self) -> Self;

    // Same as sqaure
    fn inv(self) -> Self;
}

impl <T: BitXor<Output = T> + BitAnd<Output = T> + Copy> Gf2Ops for Bs2State<T> {
    fn mul(self, y: Bs2State<T>) -> Bs2State<T> {
        let (b, a) = self.split();
        let (d, c) = y.split();
        let e = (a ^ b) & (c ^ d);
        let p = (a & c) ^ e;
        let q = (b & d) ^ e;
        Bs2State(q, p)
    }

    fn scl_n(self) -> Bs2State<T> {
        let (b, a) = self.split();
        let q = a ^ b;
        Bs2State(q, b)
    }

    fn scl_n2(self) -> Bs2State<T> {
        let (b, a) = self.split();
        let p = a ^ b;
        let q = a;
        Bs2State(q, p)
    }

    fn sq(self) -> Bs2State<T> {
        let (b, a) = self.split();
        Bs2State(a, b)
    }

    fn inv(self) -> Bs2State<T> {
        self.sq()
    }
}

// Operations in GF(2^4) using normal basis (alpha^8,alpha^2)
trait Gf4Ops {
    // multiply
    fn mul(self, y: Self) -> Self;

    // square & scale by nu
    // nu = beta^8 = N^2*alpha^2, N = w^2
    fn sq_scl(self) -> Self;

    // inverse
    fn inv(self) -> Self;
}

impl <T: BitXor<Output = T> + BitAnd<Output = T> + Copy> Gf4Ops for Bs4State<T> {
    fn mul(self, y: Bs4State<T>) -> Bs4State<T> {
        let (b, a) = self.split();
        let (d, c) = y.split();
        let f = c.xor(d);
        let e = a.xor(b).mul(f).scl_n();
        let p = a.mul(c).xor(e);
        let q = b.mul(d).xor(e);
        q.join(p)
    }

    fn sq_scl(self) -> Bs4State<T> {
        let (b, a) = self.split();
        let p = a.xor(b).sq();
        let q = b.sq().scl_n2();
        q.join(p)
    }

    fn inv(self) -> Bs4State<T> {
        let (b, a) = self.split();
        let c = a.xor(b).sq().scl_n();
        let d = a.mul(b);
        let e = c.xor(d).inv();
        let p = e.mul(b);
        let q = e.mul(a);
        q.join(p)
    }
}

// Operations in GF(2^8) using normal basis (d^16,d)
trait Gf8Ops {
    // inverse
    fn inv(&self) -> Self;
}

impl <T: BitXor<Output = T> + BitAnd<Output = T> + Copy + Default> Gf8Ops for Bs8State<T> {
    fn inv(&self) -> Bs8State<T> {
        let (b, a) = self.split();
        let c = a.xor(b).sq_scl();
        let d = a.mul(b);
        let e = c.xor(d).inv();
        let p = e.mul(b);
        let q = e.mul(a);
        q.join(p)
    }
}

impl <T: AesBitValueOps + Copy + 'static> AesOps for Bs8State<T> {
    fn sub_bytes(self) -> Bs8State<T> {
        let nb: Bs8State<T> = self.change_basis_a2x();
        let inv = nb.inv();
        let nb2: Bs8State<T> = inv.change_basis_x2s();
        nb2.xor_x63()
    }

    fn inv_sub_bytes(self) -> Bs8State<T> {
        let t = self.xor_x63();
        let nb: Bs8State<T> = t.change_basis_s2x();
        let inv = nb.inv();
        inv.change_basis_x2a()
    }

    fn shift_rows(self) -> Bs8State<T> {
        let Bs8State(x0, x1, x2, x3, x4, x5, x6, x7) = self;
        Bs8State(
            x0.shift_row(),
            x1.shift_row(),
            x2.shift_row(),
            x3.shift_row(),
            x4.shift_row(),
            x5.shift_row(),
            x6.shift_row(),
            x7.shift_row())
    }

    fn inv_shift_rows(self) -> Bs8State<T> {
        let Bs8State(x0, x1, x2, x3, x4, x5, x6, x7) = self;
        Bs8State(
            x0.inv_shift_row(),
            x1.inv_shift_row(),
            x2.inv_shift_row(),
            x3.inv_shift_row(),
            x4.inv_shift_row(),
            x5.inv_shift_row(),
            x6.inv_shift_row(),
            x7.inv_shift_row())
    }

    // Formula from [5]
    fn mix_columns(self) -> Bs8State<T> {
        let Bs8State(x0, x1, x2, x3, x4, x5, x6, x7) = self;

        let x0out = x7 ^ x7.ror1() ^ x0.ror1() ^ (x0 ^ x0.ror1()).ror2();
        let x1out = x0 ^ x0.ror1() ^ x7 ^ x7.ror1() ^ x1.ror1() ^ (x1 ^ x1.ror1()).ror2();
        let x2out = x1 ^ x1.ror1() ^ x2.ror1() ^ (x2 ^ x2.ror1()).ror2();
        let x3out = x2 ^ x2.ror1() ^ x7 ^ x7.ror1() ^ x3.ror1() ^ (x3 ^ x3.ror1()).ror2();
        let x4out = x3 ^ x3.ror1() ^ x7 ^ x7.ror1() ^ x4.ror1() ^ (x4 ^ x4.ror1()).ror2();
        let x5out = x4 ^ x4.ror1() ^ x5.ror1() ^ (x5 ^ x5.ror1()).ror2();
        let x6out = x5 ^ x5.ror1() ^ x6.ror1() ^ (x6 ^ x6.ror1()).ror2();
        let x7out = x6 ^ x6.ror1() ^ x7.ror1() ^ (x7 ^ x7.ror1()).ror2();

        Bs8State(x0out, x1out, x2out, x3out, x4out, x5out, x6out, x7out)
    }

    // Formula from [6]
    fn inv_mix_columns(self) -> Bs8State<T> {
        let Bs8State(x0, x1, x2, x3, x4, x5, x6, x7) = self;

        let x0out = x5 ^ x6 ^ x7 ^
            (x5 ^ x7 ^ x0).ror1() ^
            (x0 ^ x5 ^ x6).ror2() ^
            (x5 ^ x0).ror3();
        let x1out = x5 ^ x0 ^
            (x6 ^ x5 ^ x0 ^ x7 ^ x1).ror1() ^
            (x1 ^ x7 ^ x5).ror2() ^
            (x6 ^ x5 ^ x1).ror3();
        let x2out = x6 ^ x0 ^ x1 ^
            (x7 ^ x6 ^ x1 ^ x2).ror1() ^
            (x0 ^ x2 ^ x6).ror2() ^
            (x7 ^ x6 ^ x2).ror3();
        let x3out = x0 ^ x5 ^ x1 ^ x6 ^ x2 ^
            (x0 ^ x5 ^ x2 ^ x3).ror1() ^
            (x0 ^ x1 ^ x3 ^ x5 ^ x6 ^ x7).ror2() ^
            (x0 ^ x5 ^ x7 ^ x3).ror3();
        let x4out = x1 ^ x5 ^ x2 ^ x3 ^
            (x1 ^ x6 ^ x5 ^ x3 ^ x7 ^ x4).ror1() ^
            (x1 ^ x2 ^ x4 ^ x5 ^ x7).ror2() ^
            (x1 ^ x5 ^ x6 ^ x4).ror3();
        let x5out = x2 ^ x6 ^ x3 ^ x4 ^
            (x2 ^ x7 ^ x6 ^ x4 ^ x5).ror1() ^
            (x2 ^ x3 ^ x5 ^ x6).ror2() ^
            (x2 ^ x6 ^ x7 ^ x5).ror3();
        let x6out =  x3 ^ x7 ^ x4 ^ x5 ^
            (x3 ^ x7 ^ x5 ^ x6).ror1() ^
            (x3 ^ x4 ^ x6 ^ x7).ror2() ^
            (x3 ^ x7 ^ x6).ror3();
        let x7out = x4 ^ x5 ^ x6 ^
            (x4 ^ x6 ^ x7).ror1() ^
            (x4 ^ x5 ^ x7).ror2() ^
            (x4 ^ x7).ror3();

        Bs8State(x0out, x1out, x2out, x3out, x4out, x5out, x6out, x7out)
    }

    fn add_round_key(self, rk: &Bs8State<T>) -> Bs8State<T> {
        self.xor(*rk)
    }
}

trait AesBitValueOps: BitXor<Output = Self> + BitAnd<Output = Self> + Not<Output = Self> + Default {
    fn shift_row(self) -> Self;
    fn inv_shift_row(self) -> Self;
    fn ror1(self) -> Self;
    fn ror2(self) -> Self;
    fn ror3(self) -> Self;
}

impl AesBitValueOps for u16 {
    fn shift_row(self) -> u16 {
        // first 4 bits represent first row - don't shift
        (self & 0x000f) |
        // next 4 bits represent 2nd row - left rotate 1 bit
        ((self & 0x00e0) >> 1) | ((self & 0x0010) << 3) |
        // next 4 bits represent 3rd row - left rotate 2 bits
        ((self & 0x0c00) >> 2) | ((self & 0x0300) << 2) |
        // next 4 bits represent 4th row - left rotate 3 bits
        ((self & 0x8000) >> 3) | ((self & 0x7000) << 1)
    }

    fn inv_shift_row(self) -> u16 {
        // first 4 bits represent first row - don't shift
        (self & 0x000f) |
        // next 4 bits represent 2nd row - right rotate 1 bit
        ((self & 0x0080) >> 3) | ((self & 0x0070) << 1) |
        // next 4 bits represent 3rd row - right rotate 2 bits
        ((self & 0x0c00) >> 2) | ((self & 0x0300) << 2) |
        // next 4 bits represent 4th row - right rotate 3 bits
        ((self & 0xe000) >> 1) | ((self & 0x1000) << 3)
    }

    fn ror1(self) -> u16 {
        self >> 4 | self << 12
    }

    fn ror2(self) -> u16 {
        self >> 8 | self << 8
    }

    fn ror3(self) -> u16 {
        self >> 12 | self << 4
    }
}

impl u32x4 {
    fn lsh(self, s: u32) -> u32x4 {
        let u32x4(a0, a1, a2, a3) = self;
        u32x4(
            a0 << s,
            (a1 << s) | (a0 >> (32 - s)),
            (a2 << s) | (a1 >> (32 - s)),
            (a3 << s) | (a2 >> (32 - s)))
    }

    fn rsh(self, s: u32) -> u32x4 {
        let u32x4(a0, a1, a2, a3) = self;
        u32x4(
            (a0 >> s) | (a1 << (32 - s)),
            (a1 >> s) | (a2 << (32 - s)),
            (a2 >> s) | (a3 << (32 - s)),
            a3 >> s)
    }
}

impl BitXor for u32x4 {
    type Output = u32x4;

    fn bitxor(self, rhs: u32x4) -> u32x4 {
        self ^ rhs
    }
}

impl BitAnd for u32x4 {
    type Output = u32x4;

    fn bitand(self, rhs: u32x4) -> u32x4 {
        self & rhs
    }
}

impl Not for u32x4 {
    type Output = u32x4;

    fn not(self) -> u32x4 {
        self ^ U32X4_1
    }
}

impl Default for u32x4 {
    fn default() -> u32x4 {
        u32x4(0, 0, 0, 0)
    }
}

impl AesBitValueOps for u32x4 {
    fn shift_row(self) -> u32x4 {
        let u32x4(a0, a1, a2, a3) = self;
        u32x4(a0, a1 >> 8 | a1 << 24, a2 >> 16 | a2 << 16, a3 >> 24 | a3 << 8)
    }

    fn inv_shift_row(self) -> u32x4 {
        let u32x4(a0, a1, a2, a3) = self;
        u32x4(a0, a1 >> 24 | a1 << 8, a2 >> 16 | a2 << 16, a3 >> 8 | a3 << 24)
    }

    fn ror1(self) -> u32x4 {
        let u32x4(a0, a1, a2, a3) = self;
        u32x4(a1, a2, a3, a0)
    }

    fn ror2(self) -> u32x4 {
        let u32x4(a0, a1, a2, a3) = self;
        u32x4(a2, a3, a0, a1)
    }

    fn ror3(self) -> u32x4 {
        let u32x4(a0, a1, a2, a3) = self;
        u32x4(a3, a0, a1, a2)
    }
}